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ANALYTIC METHOD FOR RISK ANALYSIS

1 Executive Summary

Estimates of cost and schedule duration of a task or project are uncertain values, so we do
not know the exact, discrete values until it is complete. Given the inherent uncertainty of
estimates, the only way to portray them is with probability distributions of possible costs
and schedule durations (or dates). Probabilistic cost and schedule distributions for a
program are quantified through the means of cost and schedule uncertainty analyses. The
most popular way these analyses are performed is though statistical simulation. Statistical
simulation (i.e., Monte Carlo and Latin Hypercube sampling) techniques are widely used
in cost and schedule risk analysis, but they have limitations.

Analytic methods of cost and schedule risk analysis exist that: 1) correctly model random
variables (RVs); 2) exactly correlate RVs and their sums, which many statistical simulation
tools cannot; 3) have no fundamental limit to the number of RVs or correlation coefficients
that can be defined; 4) provide [near] instantaneous results; and 5) have the ability due to
their mathematical form to clearly indicate uncertainty drivers and thus the risk.

This report presents an analytic (i.e., a non-simulation based) method of quantitative cost
and schedule risk analysis building on analytic techniques of applied probability and
statistics. The analytic method provides near-instantaneous results with exact statistics
such as mean and variance of total cost and total schedule duration. It capitalizes on the
fact that the structure of estimates defines a mathematical problem to be solved through the
use of applied probability. This report provides the mathematics required to perform the
tasks of calculating the uncertainty of an estimate, and determining the risk from this
uncertainty and a point estimate.

While much of the mathematics of applied probability used in this report are publicly
available through journal publications, the author has derived methods and formulae that
have, to his knowledge and through his research, never been published before. Therefore,
the report provides a very unique set of mathematics useful in the analytic assessment of
cost and schedule uncertainty and risk.

The report includes several quantitative examples, including two example estimates, where
the results obtained using the analytic method compare well with those results obtained
through statistical simulation. Given the excellent results obtained through this research,
additional applications of the analytic method are recommended for use in risk analysis,
estimating relationship development, and probabilistic cost and schedule estimating.

11
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ANALYTIC METHOD FOR RISK ANALYSIS

Introduction

This report describes an analytic method of applied probability analysis techniques
germane to problems encountered in cost and schedule risk estimation. By their very
nature, estimates are uncertain projections of future events. Given that, we discuss the
probabilistic nature of estimates and describe the mathematical problems encountered in
cost and schedule estimating. We discuss the mathematical tools that can be used to solve
these problems (i.e., statistical simulation and statistical analysis) and we compare the two
approaches. The next sections of the report provide the tools required to perform statistical
analysis. Finally, we provide two sample problems to demonstrate analytical techniques.

Probabilistic Nature of Estimates

Cost and schedule estimating is an integral part of the program management process.
Organizations use these estimates for planning purposes such as cost/performance tradeoff
studies, benefit/cost analyses, source selections, and budget planning. But estimates are
predictions and their exact values are uncertain in nature since they have not yet become
“fact”. Since the true cost and schedule durations of a project (or task) are only known
when it is complete, the best we can do is to rely on estimates at various stages of planning
and completion.

The word “estimate” itself implies uncertainty, so an estimate is not well represented by a
single number but by a distribution of possible estimates. The distribution of possible
estimates is defined by the estimate’s probability distribution that is calculated through the
application of probability and statistics.

Uncertainty and Risk

Uncertainty is a measure of the distribution of possible outcomes of a random variable,
such as cost and schedule estimates. This distribution is called a probability distribution
and can either be a continuous, discrete, or mixed distribution.*

2.2.1 Probability Density and Probability Mass

Probability distributions defined for continuous distributions are probability density
functions (PDFs). PDFs such as the one shown in Figure 2-1 can be expressed in terms of
a mathematical formula of fy (x), where fy (x) is the PDF defined over the range, x.

L A “mixed distribution” is a combination of discrete and continuous distributions.

12



ANALYTIC METHOD FOR RISK ANALYSIS

Cost Estimate Probability Density

/ O\
/ N\
./Point Estimate \
/i N\
/ .

X, Cost, BY2012SM

Density, p(X)

Figure 2-1 Probability Density Distribution

Probability distributions of discrete risks (which are discontinuous functions) are defined
by probability mass functions (PMFs) such as the one shown in Figure 2-2. We will define
the PMF as gy (x), where gx(x) is the function defined over the range x.

Cost Estimate Probability Mass

Il T | T | T ‘ | III T 1

X, Cost, BY2012$M

Probability Mass, f(x)

Figure 2-2 Probability Mass Distribution

2.2.2 Cumulative Probability
The cumulative probability is the probability that a real valued random number will be less
than some value x. In the case of discrete distributions, it is the sum of the probability-
weighted values of the PMF less than x, and in the case of continuous distributions,

(remembering our college calculus) it is the integral of the PDF from - co to x.

13



ANALYTIC METHOD FOR RISK ANALYSIS

2.2.3 Definition of Risk
Any point estimate has some probability that it will be sufficient or be exceeded (Figure
2-3). The probability that an estimate will be exceeded (i.e., overrun) is the risk, and the
probability that the estimate will be sufficient (and that there is a probability of the actual
value being lower) is the opportunity or reward.

Cost Estimate Probability Density

O Unfavorable

O Faverable

" Density, plX)

Polnt Estimate

X, Cost, BY20125M

Figure 2-3 Risk, Reward and the Point Estimate

Since the entire area under the PDF shown in Figure 2-3 is, by definition, equal to one, the
sum of the probabilities of overrun (risk) and under-run (reward or opportunity) is also
equal to one. The probability of risk occurrence is the area of the distribution to the right
of the point estimate and the probability of reward is the area to the left. As stated earlier,
the area of the distribution under a curve can be computed using the definite integral
expression bounded by the lower and upper limits. Therefore, risk is the integral of the
PDF from the point estimate, c, to infinity (o).

Risk = f:o fx@dx =1—[°fy(x)dx =1 — Fy(c). 2-1
Reward or opportunity represents the area under the curve from —oo to ¢, which is
Reward = f_coo fx(x)dx = Fy(c). 2-2

If we are using discrete risks defined by PMFs, then the risk equation is a summation of all
of the probability-weighted risk consequences at all points x (i.e., costs or schedule
durations) (Garvey P. R., 2000) greater than our point estimate, c.?

Risk = Yse Py (%), 23

2 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.

14
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The amount of risk to an estimate is defined by two things: the uncertainty of the estimate
and the point estimate, or the bet. To illustrate the interaction of risk with uncertainty and
the bet, consider the four examples in Figure 2-4. Figure 2-4a. is a low-uncertainty, high-
risk estimate since the area under the PDF to the right of the bet is much larger than that to
the left. This means there is a disproportionate amount of risk compared to opportunity.
In in Figure 2-4b, the risk is reduced by choosing a bet further to the right in the PDF.
Note that in both of these cases, the potential low- and high-end outcomes remain the same
— only the bet is changed. When the low bet is accompanied by a larger estimate
uncertainty, as in in Figure 2-4c, the risk is reduced, but the potential impacts due to high-
end outcomes (consequences) are increased. Finally, moving the bet to the right in the
high uncertainty case, the risk is reduced as shown in in Figure 2-4d, but the potential for
extreme high-end outcomes remains.

a. Low Uncertainty, Low Bet b. Low Uncertainty, High Bet

A
[\
[\

p(x)
p(x)

VRN L
] [}
T 1 T T T T T T T 1 T

C C

X X
c. High Uncertainty, Low Bet d. High Uncertainty, High Bet
= =
Q Q
/_\ /\.'\
‘/ ] \ / ] \
[} ]
T T ! T T d T T T T 1 T T

c

Figure 2-4 Relationship between Risk, Uncertainty and the Bet

2.3 Joint Probability Distributions

So far we have discussed the univariate® probability distributions of single random
variables (i.e., estimates of cost or schedule). When we are interested in the probability
distribution of more than one random variable, we are interested in the multivariate
probability distributions, such as the probability of achieving a particular cost and schedule
of a yet-to-be-completed project. When the relationships between variables such as
estimated cost and schedule must be considered, we need to form a joint probability
distribution. An example of this is shown in Figure 2-5.

¥ Single variable

15
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0.005
0004

0.002

plCost, Schedule)

27

S 32

'-'hedu!e; !lvfom.t,a]r 4247 oy 57 7542 (P
s 62

Figure 2-5 Joint Probability Density Function
If we have two random variables X and Y, we can define the probabilities

P{X < x} = Fy(x) = [ Fx(2) dz 2-4
P{Y <y} =F () = [2 Fy(2)dz

The joint probabilities of P{X < x,Y <y} can be expressed as the joint distribution
function

PIX <xY <y} =Fuo(xy) = 2, 7, far(z,w) dzdw 25
The joint PDF is defined as the partial derivative of Fxy (x, y) with respect to x and y.

0%Fxy(x,y) -
frr(x,y) = LD 20

2.3.1 Marginal Distributions
The marginal distributions of a joint probability function are those distributions that are
considered individually. Given a joint distribution of two random variables, the marginal
distribution of one is its probability distribution averaged over the probability information
from the other’s distribution.

2.3.2 Conditional Distributions
A conditional distribution of a joint probability function is the distribution of one random
variable given a specific value of the other distribution(s).

16
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2.4 Statistics of a Random Variable

2.4.1 Moments
Moments provide useful information about the characteristics of a random variable, X,
such as the measures of central tendency, dispersion and shape. When referring to the
moments of a distribution or a set of data, it is useful to define which of the three types of
moments are being used: raw moments, central moments or standardized moments.

24.1.1 Raw Moments
The k™ moments about the origin are called “raw moments” of a PDF, f, and are defined
as:

, Yxxkf(x) ;if X isdiscrete 2.7
e = fjooo x*f(x)dx ;if X is continuous

The mean, y; , is the first raw moment of X about the origin, and it is a measurement of the
central tendency of the data. We are more familiar with the mean being represented as, u,
so we will use this notation for the mean hereafter.

2.4.1.2 Central Moments
Central moments of a distribution are the raw moments about the mean, u. The first
central moment is by definition zero, but the second central moment is the variance, o2,
which is a measure of dispersion about u. Equation 2-8 provides the definition of the k™
central moments of discrete and continuous RVSs.

) Yx(x —w?2f(x) ;if Xisdiscrete 2-8
7= ffooo(x — W2f(x)dx ;if X is continuous

The variance, o2, is the square of the standard deviation, o.

The first five central moments expressed in terms of the raw moments are:

P =0 2-9

pp = —py 4y =y — 2-10
ps = 2uy° — 3piuh + pb 2-11
pa = =3y + 61y — Apip + 2-12
ps = 4pi° — 1003y + 1043 ° h — Spqpl + g 2-13

2.4.1.3 Standardized moments
Standardized moments are the k™ central moments, ., normalized by the k™ powers of the

standard deviation o* (i.e., =),
g

17
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The most well-known standardized moments are skewness and kurtosis. Skewness, 9, is
the measure of asymmetry of X and is defined as the third standardized moment:

skew(X) =9 = g 2-14

A distribution is a) symmetric if 9 = 0, b) left (i.e. negatively) skewed if 9 < 0, and c)
right (i.e., positively) skewed if 9 > 0 as shown in Figure 2-6.

Right Skewed Left Skewed
9>0 Y <0

Figure 2-6 Left and Right Skewed Distributions

Kurtosis is the fourth standardized moment. Most textbooks define kurtosis of symmetric,
unimodal distributions as a measure of peakedness of a distribution X. This is a correct
definition, however a more descriptive definition of kurtosis exists (DeCarlo, 1997),
(Moors, 1986), (Balanda & MacGillivray, 1988), and (Darlington, 1970).* > % 7 Moors
defines kurtosis as the measure of the dispersion around the two “shoulders” of a
distribution located at 4 + 0. DeCarlo warns that the classical attribution of peakedness of
a distribution vice its “fat-tailedness” is not a good representation of the meaning of
kurtosis and provides examples where this is the case.?

kurt(X) = % 2-15

A more commonly used metric is the “excess kurtosis”, which is kurt(X) — 3. Since the
kurtosis of a normal distribution is equal to three, the excess kurtosis denoted as k, is
adjusted by 3 as in Equation 2-16.

K ;
rc:kurt(X)—B:a—‘:—S 2-16

In general, where a) k = 0 the distribution is mesokurtic, b) ¥ > 0 it is leptokurtic, and c)
Kk < 0 it is platykurtic.

* DeCarlo, L. (1997). On the meaning and use of kurtosis. Psychological Methods, 292-307.

> Moors, J.J.A. The meaning of kurtosis: Darlington reexamined. Amer. Statist.1986, 40, 283-284.
® Balanda, K.P.; MacGillivray, H.L. Kurtosis: A critical review. Amer. Statist.1988, 42, 111-119.
" Richard B. Darlington. Is Kurtosis Really "Peakedness?". Amer. Statist. 1970, 24, 19-22.

® DeCarlo, L. (1997).
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/ Leptokurtic
k>0

Mesokurtic \ _/\
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Figure 2-7 Excess Kurtosis of Distributions

2.4.1.4 Moment Summary
The moments describing the characteristics of a random variable such as the measures of
central tendency, dispersion and shape (i.e., u, 02 9,k) can be derived from the raw
moments u;, of X.  We will capitalize on these relationships in the analytic method
proposed in this report.

2.4.2 Quantile Statistics
Quantiles are a set of divisions of data into groups containing equal numbers of
observations. We are most familiar with percentiles, which are division of the data into
100 groups of 1% of the cumulative area under a PDF. We will denote the percentile, g, of
a random variable, X, asX,_,. For example the 50" percentile of X would be

written X,_¢ 5.

2.4.3 Expectation Operator
The expectation operator, E[-], of a random variable is a powerful expression. The
expected value, or u, (Equation 2-17) of a random variable is perhaps the most important
single parameter in applied probability. It is written as

E[X] = uy , 2-17
and is the integral

E[X]= [ xfx(x)dx, where fy(x) is the PDF of X. 2-18

The mean represents the center of gravity of the random variable. Another important
parameter is a2, defined by the expectation of the squared difference of the PDF and its
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mean. This quantity represents the moment of inertia of the probability masses (Papoulis,
1965).°

Var(X) = 0% = E[(X — w?] = [7 (X — )2 fx (x)dx 2-19

What is most important about E[-] is its ability to determine the raw moments (Equations
2-7 and 2-18) and central moments (Equations 2-8 and 2-19) of a random variable, and
thus the measures of central tendency, dispersion and shape (i.e., u, 02,9, k).

2.4.4 Order Statistics

2.5

Order statistics are those statistics that describe the numerical order in which random
variables or samples of random variables appear. Some of the simplest order statistics are
the minimum and maximum values defining the range of a PDF. Other, more complex
order statistics are those which describe the maximum and minimum of a series of random
variables. Order statistics play an especially important role in schedule risk analysis
whereby the maximum probabilistic end dates of certain tasks define the maximum
probable end-date of the schedule.

Section Summary

The mathematics of the analytic techniques used to solve estimating uncertainty problems
require definition of the estimating problems germane to cost and schedule estimates. In
the next section, we discuss the mathematical problems typically found in cost and
schedule estimating.

® Papoulis, A. (1965). Probability, Random Variables and Stochastic Processes. New York, NY: McGraw
Hill.
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3 Cost and Schedule Estimates

3.1

Cost and schedule estimates are defined by a set of mathematical formulae that lend
themselves to probabilistic uncertainty analysis. In this section, we will discuss the
structures of these types of estimates and define the mathematical problem(s) to be solved
in probabilistic uncertainty analysis.

Book™!* (1994; 2002) showed the cost and schedule estimating communities that every

cost and schedule estimating problem should be treated as a risk analysis, not simply an
exercise in summing most likely costs — the result of which is a number that has no
statistical meaning without risk analysis. Furthermore, he showed estimates should be
treated as random variables and not deterministic numbers (i.e., constants).

Nomenclature
To better describe the mathematical problems germane to cost and schedule estimates, we
will define constants, variables, and random variables.

A numerically expressed entity is called a “constant” if there is a unique specific number
that is always its numerical value (e.g., , 1.414, -2). A numerically expressed entity is
called a “variable” if there are several possible specific numbers that may serve as its
numerical value and which specific number happens to be its numerical value in any
particular situation depends on the particular circumstances (e.g., x, y, z)*2. A variable is
further denoted a “random variable” if the proportion of particular situations in which any
specific number happens to be its numerical value is established by a probability
distribution (e.g., X, Y, cost, schedule duration).

We will use the following notation throughout this document to define variables.
Constants will be defined using their numerical value or lowercase letter (e.g., a, b, c, d, e).
Variables will use lowercase lettersu,v,w,x,y,and z, and random variables will use
uppercase letters U,V, W, X,Y and Z. Random variables defined by commonly used PDFs
will use the following notation:

Uniform: fx(x;L,H) =U(L,H) 3-1
Triangular:  fx(x;L,M,H) =T(L,M,H) 3-2
Normal: fx(; u,0) = N(u,0) 3-3
Lognormal:  fx(x;u,0) = L(u, 0) 3-4
Beta: fx(x;a,B,a,b) = B(a,f,a,b) 3-5
Where

9 Book, S. A., “Do Not Sum ‘Most Likely’ Cost Estimates”, 1994 NASA Cost Estimating Symposium,
Johnson Space Center, Houston, TX, 8-10 November 1994,

1 Book, S. A., “Schedule Risk Analysis: Why It is Important and How to Do It”, Ground Systems
Architectures Workshop, The Aerospace Corporation, EI Segundo, CA, 13-15 March 2002.

2 Book, S. A., 1994.
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L, M, H are low, most likely (mode), and high shape parameters

u, o are the mean and standard deviation of the distribution in unit space
a, B are standard beta distribution shape parameters

a, b are lower and upper bounds of the four-parameter beta distribution

The properties of these distributions are provided in Appendix A - Probability
Distributions.

The Cost Estimating Problem

The cost estimating problem is defined by the mathematics of the following: 1) the work
breakdown structure (WBS), which requires multiple levels of statistical summation; and
2) the mathematics most applicable to the estimating approach(es) used (i.e., bottom-up,
analogy, parametric). We will first describe the statistical techniques used to perform
statistical summation of a WBS structure and then discuss, in more depth, how to apply
analytic uncertainty and risk analysis to the individual WBS elements.

3.2.1 WBS structure

The WBS defines the summation hierarchy of the project. In other words, it defines the
mathematical problem of summation of individual WBS elements to successively higher
levels of the WBS up to the total project level. The statistical treatment of summing
correlated random variables is fairly straightforward and can be easily programmed into a
spreadsheet or cost estimating tool (Young, 1992).%

3.2.2 Estimating Methods

The methods used to estimate costs at different WBS levels define another part of the
mathematical problem to be solved. Different estimating methods require different
mathematical procedures, so we will examine these methods individually and note the
important mathematical features of each. These include bottom-up, analogy approach
relying on scaled actuals, multiple scaled actuals, and cost estimating relationships (CERS).

3.2.2.1 Bottom-up

The bottom-up estimating approach relies on summing a detailed list of the classical
elements of cost: labor (effort), material and expenses. If a detailed, resource-loaded
schedule is used to estimate effort, then the duration of the task, the staffing level and the
associated labor rates can be represented by random variables. As an example, the cost of

13 The “Formal Risk Assessment of System Cost Estimates” (FRISK) method is an analytic risk model that
uses “Method of Moments” to calculate summary distributions. FRISK was originally developed by Phil
Young of The Aerospace Corporation in 1992 (before Crystal Ball and @Risk became available) with
funding from USAF SMC. A BASIC Program implementing FRISK was developed by Dr. Stephen Book
and enjoyed many years of use. FRISK has been reprogrammed in Excel by various analysts since 2000,
with each new version providing more advanced capability and features and ease of use.
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the effort for a particular task is the product of the task duration, the resource loading
profile and the associated labor rates. Each is treated as a random variable.

W = XYZ; where
W = effort, measured in dollars
X = duration of the task, measured in hours
Y = resource loading, measured in heads
Z = the labor rate, measured in dollars per hour per head

In this case, the first mathematical problem to be solved is the multiplication of multiple
(and perhaps correlated) random variables. This will be discussed in Section 5. The
second problem is the summation of the elements of cost represented by random variables
for each WBS element, as discussed in Section 4.2.2.

3.2.2.2 Analogy (Scaled Actuals)

The analogy method relies on using an actual cost of a product or service to estimate the
cost of a similar product or service. Intuitively, it is the easiest method to use when
preparing a cost estimate. The simplest form of an analogy estimate is a direct analogy, in
which case the estimated cost is equated to the actual cost of the similar product or service.
Unfortunately, this simple procedure does not provide any information about the
uncertainty of the estimate. Indeed, the analogy can be the most misleading estimating
method from a probability perspective.

Studies (MacKenzie & Addison, 2000) by the Space Systems Cost Analysis Group
(SSCAG) have shown the standard deviation of the costs of similar items at the “box level”
of the WBS to be as much as 30% to 40%.™ In the same report, the authors showed the
data to be lognormally distributed, which provides a shape to the distribution. Given this
information, we are able to derive a measure of the standard deviation of the “actual” cost
based on the coefficient of variation (CV = u/c), but we do not know at which percentile
to place our particular analogy. Is it at the 50" percentile (median), the mode, the mean
(expected value), or is it at some other percentile such as the 4™ or the 85", or somewhere
else? If it is at the mean, then the PDF of the analog is easily determined. But, is this the
right PDF to use in this situation? Figure 3-1 shows an example lognormal distribution
based on the mean and CV = 0.3, L(100, 30).

4 MacKenzie, D. and Addison, B., “Space System Cost Variance and Estimating Uncertainty”, 70" SSCAG
Meeting, Boeing Training Center, Tukwila, WA, October 12-13, 2000.
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Figure 3-1 PDF of Cost of Analogy at Mean

Now consider the case where the analogy is one cost of many possible costs within an
unknown probabilistic range. To provide a distribution about the analogous cost, we need
to either 1) assume a percentile value for the analogy within a prescribed distribution, or 2)
determine the (yet unknown) probabilistic range of possible values to which the analogous
cost belongs. The first case is described by Flynn, Braxton, Garvey and Lee (2012)." The
second case requires the use of applied probability to determine the probability
distribution. The derivation for this approach is provided in Appendix C — Derivations.

3.2.2.3 Scaled Actuals (Factor)
If a simple factor is used to scale an actual cost, then the mathematical problem is the
multiplication of random variables, where one random variable is the scaling factor and the
other is the PDF of the analogy, described in Section 3.2.2.2.

3.2.2.4 Scaled Actuals (Interpolation)
When we estimate the cost of an item through linear interpolation of two actuals using a
cost driver (i.e., weight), the mathematical problem is a linear relationship:

3-6

(Y2—Y1)
Y,=Y, + (X, —x;) * (xz_xll), where

Y,= the cost estimate (random variable)

X, = the cost driver of the item we are estimating (a random variable)
Y1, Y, = the costs of the two actuals, (random variable)

X1, X, = the cost drivers of the two actuals (constant)

> Flynn, B., Braxton, P., Garvey, P., & Lee, R. (2012). Enhanced Scenario-Based Method for Cost Risk
Analysis: Theory, Application and Implementation. 2012 SCEA/ISPA Joint Annual Conference & Training
Workshop. Orlando, FL.
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The plot of the discrete interpolation problem is shown in Figure 3-2.

Discrete Variable Interpolation
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X.Y1

Cost Driver, x

Figure 3-2 Discrete Variable Interpolation

The mathematical problems to be solved in Equation 3-6 are the addition, subtraction and
multiplication of random variables.

Note the costs of the two actuals have a similar issue as the direct analogy method whereby
we cannot assume the a priori standard deviations of the samples. If we cannot treat these
samples of actual values as constants (no error) in the direct analogy case, then we
shouldn’t treat them as such in the interpolation case.

3.2.2.5 Multiple Scaled Actuals and Cost Estimating Relationships
Multiple scaled actuals are those actuals that are similar in nature and whose costs can be
represented by a probability distribution or by simple moments such as u and o. For
example, the costs of three-meter ground station antennas could be represented by a normal
distribution, N(u, ). Provided the antenna of interest fits into the set of three-meter
ground station antennas represented by the PDF, we know the u, o, and confidence level of
each estimate in the range of the PDF.

When we are estimating costs of products or services that are based on a similar set of
parameters, we can develop a cost estimating relationship (CER) that explains some of the
variations in cost based on variations in one or more independent variables (i.e., cost
drivers). Consider the generic form of a recurring CER based on unit theory shown in
Equation 3-7.

y={la+b I (v H?’zl(xjdf) T4 (ex59)]}e ; where 3-7
a, b, c,d,and e are coefficients of the regression (c = In,(LCS;)),

LCS. = cumulative average learning curve slope when a =0,

u; = unit number i,
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x; = independent variable j,

N = number of independent variables,

s, = indicator (“dummy”) variable k,

M = number of indicator variables, and

€ = percent standard error (multiplicative).

The independent variables, x;, can be represented by random variables X; as can the

multiplicative error of the estimate, e. The dependent variable, y, will also be a random
variable, Y, defined by the PDFs of each independent variable, the functional
transformation of the CER form, and the PDF of the multiplicative error, ¢.

The CER provides a model for constructing the PDF, so we can obtain the u, o, and
confidence level of each estimate in the range of the PDF as in the case of multiple scaled
actuals. To compute the statistics of the CER, we must first learn how to convolve and
transform random variables. This is discussed in Sections 4 through 7.

3.2.3 Discrete Risks
Analysts may need to include discrete risk events form a risk register (Table 3-1) in a cost
or schedule estimate. In the single risk case, this means there is a probability that some
estimate of additional cost or schedule will be added. With multiple risks, the problem
becomes combinatoric, since we must account for any combination of risks that could
potentially occur.

Historical cost and schedule actuals contain realized risks which may or may not have been
mitigated or manifested themselves into cost and schedule growth from the original
proposed estimate. By using historical actuals to form the estimating relationships, the
resulting estimate 1) will appear more conservative than if it had been developed using
engineering judgment or non-metric-based approaches; 2) will inherently contain schedule
and cost risks typical of similar programs; and 3) will be more prone to double or even
triple-counting risks when augmented with discrete cost and schedule risks from a risk
register (Table 3-1).

Table 3-1 Example Risk Register

Risk ID | Description Probability | Impact Impact Area
R1 Additional program management personnel 0.50 $200,000 Cost
R2 Redesign of computer board 0.25 6 Months Schedule
$75,000 Cost
R3 Parts failure 0.10 $250,000 Cost
Technical
R4 Second vendor required 0.05 12 months Schedule
Technical
01 Renegotiate subcontract 0.25 $100,000 Cost
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To form a complete risk picture, additional cost-related risks identified by the schedule risk
assessment (SRA) and the discrete risk analysis obtained from the risk and opportunities
register (ROR) are included to form the risk profile of the program. In many cases, the
historical risk inherent in the use of estimating methods developed from actual data covers
many potential risks (Figure 3-3). In these cases, the analyst must identify unique risks
and omit redundant risks (B and C) identified and represented in the SRA and ROR. The
use of more robust statistical and risk analyses minimizes the unidentified and untracked
risks (A).

Potential Risks

Additional
Schedule

Historical Data

Risks
from Analogous
Programs
Additional
Cost

Risks

Figure 3-3 Estimating Risk Venn Diagram

3.3 The Schedule Estimating Problem

The schedule estimating problem is defined by the method used to estimate the schedule
duration. When scaled analogy or multiple scaled actuals or schedule estimating
relationships (SERs) are used to estimate schedule duration, the mathematical problem to
be solved is similar to those of cost estimating. The two fundamental differences are: 1)
probabilistic durations are measured in workdays, and 2) when the bottom-up approach is
used, the schedule network defines the mathematical problem to be solved. We will
discuss the issues that arise when using workdays rather than calendar days and then
discuss the issues arising from the arrangement of tasks in a network.

3.3.1 Using Workdays in a Schedule
When using workdays in a program schedule, probabilistic dates are expressed as discrete
rather than continuous distributions. This arises from the fact that a particular task may
finish on a particular day (or part of a work day) but not all possible values within the
range. Consider the example of the duration of a task to be a continuous, uniform
distribution defined as U(1,2). The lower bound of the continuous distribution is defined
as one day and the upper bound as two days. Assuming a continuous distribution for the
duration of the task, the finish date of the task will be within the range of one to two days
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later. In our example, the mean and standard deviation of the duration’s continuous
uniform U (L, H) distribution are:

L+H
MU(LZ) S T == 1.5 dayS

1 1 1
Ou(2) = J; (H—L1)?= \/E 2-1)2= \/; = 0.2887 days

Since schedules (and scheduling software programs) use discontinuous working days (as
opposed to continuous calendar days) to define start and finish dates, the probabilistic
finish date will be one or two days after the start date, not anywhere within entire range of
the distribution. This phenomenon induces changes in the statistics of the finish date of the
task and the overall distribution shape and statistics of the schedule. If the duration is
treated as a discrete uniform DU (L, H) distribution with two (n=2) discrete days duration,
the statistics are:

L+H 1+2
HDU(I,Z) = T == T S 1.5 WOI’kdayS (Wd)

2
H— L- 2 —1.5)24(1-1.5)2
O'DU(l’z) = \/( MDU(LZ)) *+(L=Hpu(.2)) = \/(2 1.5)%+(1-1.5) = \/% = 0.5 wd

n 2

Note the mean is unchanged, but the variance increases dramatically because the
probability mass is equally distributed at the lower (L) and upper (H) bounds of the
distribution. The statistics take a more severe departure when evaluating the distribution in
calendar days where one possible finish day may occur on a Friday and another on a
Monday, assuming Saturday and Sunday are not workdays. This translates into a
distribution with two possible durations in calendar days with the statistics:

Upu(14e) = # = 1:—4 = 2.5 calendar days (cd)

_ 2 (- 2 0 V2419512
OpuLay = \/(H Hpu,2)) +L—Kpu(1,2)) _ \/(4— 2.5)2+(1-2.5) _ \/%: 15 cd

n 2

We must take great care to properly define the appropriate units and respective shapes of
durations or else we may be miscalculating the correct moments of the schedule durations,
start dates and finish dates. For this reason, probabilistic workdays are defined by
continuous distributions, and calendar days are defined by discrete distributions.

3.3.1.1 Converting Calendar Days to Workdays
Scheduling software makes provisions for converting from a number of calendar days to
workdays and vice versa. A simple approximation that can be used is:

cd = (7/5)wd + € where e = 1 wd 3-8
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This conversion provides less than 1% error for date conversions over 10 wd as shown in
Figure 3-4. An equally useful approach when using Excel is to compute the finish date (in
cd) using the WORKDAY() function, which calculates the finish date (in cd) using the start
date (in cd) and duration (in wd). The duration in cd (and the appropriate conversion
factor from wd to cd) can be calculated by subtracting the finish date (in cd) from the start
date (in cd).

3.3.1.2 Expressing Durations and Dates as Random Variables
When probabilistic schedule network tools use continuous distributions to define the
probabilistic durations of tasks, they effectively transform the continuous distributions into
discrete distributions binned into possible working days. This discretization of continuous
distributions scales the standard deviation of the task’s duration. The conversion factor
shown in 3-8 provides a good approximation of this scaling for standard deviations of
durations over 25 wd as shown in Figure 3-4.

WD to CD Approximation Error

400%
350%
300%
250%
200%
150% i
100% -+

50% v /
1

Date error

Error

e Sigma error

/S
0 20 30 40 50 60
Work Days

0%
50% O

Figure 3-4 Workday-to-Calendar Day Approximation Error

3.3.2 Arrangement of Tasks in a Network
Schedule networks contain the task durations and the arrangement of those tasks with
respect to each other. There are four possible arrangements: serial, parallel, tree and
feedback (Book S. A., 2011)."°

1 Book, S. A., “Schedule Risk Analysis: Why It is Important and How to Do It”, 2011 ISPA/SCEA Joint
Annual Conference & Training Workshop, Albuguerque NM, 7-10 June 2010.
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3.3.2.1 Serial Arrangement
In a serial arrangement, each task is arranged as a predecessor or a successor of another.
Figure 3-5 shows a serial arrangement of tasks represented by boxes. The number in each
box indicates the duration (number of wd) allocated to the individual tasks. The serial
network’s critical path passes through all of the boxes, and its duration is the sum of the
durations of the individual activities in the serial network. The critical path, in this case,
has a total duration equal to 32 wd.

[3PlipPlepPl2pP[3pPlap{2pP{2P{18]

Figure 3-5 Serial Network (Book S. A., 2011)

3.3.2.2 Parallel Arrangement
In a parallel arrangement, two activities are “parallel” if neither is a predecessor or a
successor of the other. The critical path passes through those boxes whose combined
duration is the longest possible through the network, not the sum of the durations of all of
the individual tasks in the network.” In Figure 3-6, the series of tasks on the top (the
critical path) is outlined in solid lines and have a total duration of 32 wd; the series of tasks
at the bottom is outlined in dashed lines and has a total duration of 27 wd.

|3|—>|1|—>|6|—>|2|—>|3|—>|4|—>|2|—>|2|—>|1|—>|8>

L2 P2 P4 2 P2 5 2 P2 P PL5
Figure 3-6 Parallel Network (Book S. A., 2011)

3.3.2.3 Tree Structure

A tree structure is a mixture of serial and parallel activities in a schedule network. In
Figure 3-7, the numbers in boxes indicate number of workdays allocated to the task
represented by each box. The critical path passes through those boxes whose combined
duration is the longest possible through the network, not the sum of the durations of all of
the individual tasks in the network. The critical path, consisting of boxes outlined in solid
lines, has a total duration = 25 wd. The sequences of boxes outlined in dotted black lines
have “slack time” of 3 wd, 8 wd, 21 wd, 5 wd and 1 wd, respectively.

" The fundamental reason why “Earned Schedule” is an incorrect approach for estimating the expected
duration of a program with parallel paths is that the total schedule duration is not equal to the sum of the
individual task durations.
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Figure 3-7 Tree-Structured Network (Book S. A., 2011)

The critical path in this case is defined by the maximum of the path durations of each
“branch” or path in the tree structure. This is a fundamental difference between schedule-
analysis software and cost-analysis software. The work breakdown structure is a “linear”
list, and program cost is calculated by adding together the costs of all items on that list.
The schedule network (unless it is entirely serial) is not linear, and therefore program
duration cannot be calculated by adding together the durations of all activities in the
network.

3.3.2.4 Merging Tasks

When parallel branches or tasks in a tree structure merge, the start date of their successor
task is driven by the maximum of the end dates of the merging predecessor tasks. The
mathematical problem to be solved when dealing with probabilistic schedule analysis (i.e.,
probabilistic start dates, end dates and durations) where tasks merge is the calculation of
the PDF of the maximum, max(fx(x)), of the PDFs of merging tasks (Covert, Using
Method of Moments in Schedule Risk Analysis, 2011). This is the source of a
phenomenon called “merge bias” which was first discovered in the early 1960s
(MacCrimmon & Ryavec, 1962), (Archibald & Villoria, 1967) when a statistical approach
was applied to schedule network analysis.*® *°

3.3.2.5 Feedback Loop

A feedback loop uses a series of feedback paths to define repeated paths such as repeated
testing due to test failures and subsequent fixes. In Figure 3-8, the numbers in boxes
indicate the number of wd allocated to the task represented by each box. The critical path
passes through those boxes whose combined duration is the longest possible through the
network. If “feedback” is not exercised, the critical path, consisting of the boxes outlined
in solid lines, has a total duration = 19 wd. If “feedback” is exercised once, all boxes lie
on the critical path, which then has total duration = 44 wd.

8 MacCrimmon, K. R., & Ryavec, C. A. (1962). An Analytical Study of the Pert Assumptions. Santa
Monica, CA: RAND.

9 Archibald, R. D., & Villoria, R. L. (1967). Network-Based Management Systems (PERT/CPM). New
York: John Wiley & Sons.
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Figure 3-8 Feedback Loop (Book S. A., 2011)

3.3.2.6 Probabilistic Branching
The feedback loop is difficult (and sometimes impossible) to model using commercially
available scheduling software, and is often modeled using probabilistic branching
techniques. These techniques insert a series of tasks in a schedule network with a set of
enabling “switches” based on the probability that these additional or repeated tasks will
occur. In Figure 3-9, the probabilistic switches are indicated by circles (nodes) containing
“p”, representing the probability of the path being exercised.

----| 1 '<-| 3 e

_--.' ___a

Figure 3-9 Feedback Loop with Probabilistic Decisions

Written in a non-recursive form, the additional, repeated tasks look like those shown in
Figure 3-9.

v

Figure 3-10 Feedback Loop with Probabilistic Branching

Probabilistic branching requires us to know how to add probability-weighted schedule
duration (a random variable) to a particular path’s duration (another random variable)
(Covert, Using Method of Moments in Schedule Risk Analysis, 2011).

3.3.3 The Critical Path
The criticality index (CI) is the probability a particular task’s path will be on the critical
path, or the probability one path will have a longer duration than the others. Where three
parallel paths (A, B and C) with probabilistic end dates merge, there are three potential
critical paths, each with its own CI, defined as:

Cly = P(A > max(B,())
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Clg = P(B > max(4,())
Cl. = P(C > max(B,A))

Generally, we can state the CI of path X (CIy) to be
CIXi = P(Xl > max(ini)) 3-9

Using the notation for the maximum of distributions to be X, then the probability that the
end date of path A is greater than the maximum of paths B and C, P(A>X), which is the
same as P(X<A), and therefore P(X-A<0). We will need to know how to subtract two
correlated random variables (the probabilistic durations of the individual paths in the
network) to compute the ClI (Covert, Using Method of Moments in Schedule Risk
Analysis, 2011).%°

Mathematics of Estimates

In Sections 3.2 and 3.3, we discussed mathematical problems to be solved when using a
variety of cost and scheduling estimating methods. The mathematical operations applied
to random variables in which we are most interested are (Figure 3-11): addition and
subtraction, multiplication and division, correlation between random variables, minimum
and maximum, linear and nonlinear transformations, and discrete risks and probabilistic
branching. These operations between PDFs result in new PDFs with moments of their
own, which we will use in the analysis. What we have not discussed yet is the subject of
correlation of random variables, which affects all of these operations.

Addition

Discrete Risks Subtraction

Probabilistic Branching H

Mlap and Min
Schedule Merge Points

Wiultiplication
Division

Dependence
Correlation

Transformation

Figure 3-11 Mathematics of Random Variables

2 Covert, R. P. (2011). Using Method of Moments in Schedule Risk Analysis. Bethesda, MD: IPM.
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3.4.1 Correlation between Random Variables

When performing operations on random variables we must have knowledge of how they
behave with respect to each other, or covary. Correlation is a statistical measure of
association between two random variables and is specified by a correlation coefficient
(pij). It measures how strongly the random variables are related, or change, with each
other. If two random variables tend to move up or down together, then they are said to be
positively correlated. If they tend to move in opposite directions, they are said to be
negatively correlated. The most common statistic for measuring association is the Pearson
(linear) correlation coefficient, p. Another is the Spearman (rank) correlation coefficient,
ps, Which is used in statistical simulation tools such as Crystal Ball and @Risk. These two
definitions of correlation are different, and should not be confused to mean the same thing.
Garvey (1999) pointed out that simulations relying on rank correlation do not correctly
model the covariance of random variables.?!

Pearson product-moment linear correlation, p(X,Y), measures the extent of linearity of a
relationship between two random variables. It plays an explicit, well-defined role in
establishing the sigma value (as well as the range) of the total-cost distribution as
described by Book (1994). For example:

e p(X,Y)=+1ifandonly if (iff) X and Y are linearly related, i.e., the least-squares
linear relationship between X and Y allows us to predict Y precisely, given X

e p?(X,Y) = proportion of variation in Y that can be explained on the basis of a
least-squares linear relationship between X and Y

e p(X,Y) = 0 iff the least-squares linear relationship between X and Y provides no
ability to predict Y, given X

The second type of correlation, called Spearman rank correlation, ps(X,Y), measures the
extent of monotonicity of a relationship between two random variables. Since it does not
appear explicitly in the formulae for any of the mathematical operations for which we are
concerned, its impact on sigma is not known.

e ps(X,Y) =+1 iff the largest value of X corresponds to the largest value of Y ,
the second largest, ... , etc.

e ps(X,Y) = —1 iff the largest value of X corresponds to the smallest value of Y,
etc.

e ps(X,Y) = 0 iff the rank of a particular X among all X values. In this case it
provides no ability to predict the rank of the corresponding Y among all X values

21 Garvey, P. R. (1999). Do Not Use Rank Correlation in Cost Risk Analysis. 32" DOD Cost Analysis
Symposium.
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Linear and rank correlations are different for different sets of pairwise data. As an
example, Figure 3-12 shows the linear and rank correlation coefficients for different plots
of x and y variables.??
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Figure 3-12 Linear vs. Rank Correlation

We discuss these two types of correlation because: 1) Pearson product-moment correlation
is an essential element used to find the distributions formed by mathematical operations on
random variables, 2) Spearman correlation is used nearly exclusively in statistical
simulations and does not define covariance, and 3) we need to know the difference
between them if we are interested in comparing analytical results to those produced by
statistical simulations.

3.4.2 Calculating Correlation Coefficients
The correlation coefficient between lists of values of random variables, such as the
multiplicative (or additive) error terms of CERs, can be calculated quite easily. Previous
papers by the author (2001), (2002), (2006) have demonstrated this application. 2 24 %
The Pearson product-moment correlation between discrete values such as pair-wise CER
residuals is calculated using Equation 3-10.

XX — u) (Y — uy) 3-10
VEX; — ux)2 XY — py)?

Pxy =

22 Covert. R. P. (2011). Using Method of Moments in Schedule Risk Analysis. Bethesda, MD: IPM.

2 Covert, R. P. (2001). Correlation Coefficients in the Unmanned Space Vehicle Cost Model Version 7
(USCM 7) Database. 3rd Joint ISPA/SCEA International Conference. Tyson's Corner, VA.

# Covert, R. P. (2002). Comparison of Spacecraft Cost Model Correlation Coefficients. SCEA National
Conference. Scottsdale, AZ.

% Covert, R. P. (2006). Correlations in Cost Risk Analysis. 2006 Annual SCEA Conference. Tysons Corner,
VA.
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where X and Y are CER residual pairs,
X; and Y; are individual program residual data, and
Uy and uy are the means of the residuals respectively.

If the two variables exactly follow a linear relationship (with no scatter), then the
correlation coefficient py, = +1 or -1. Similarly, if there is no correlation between X and
Y, then the numerator should be zero, and pyy = 0.

3.4.3 Correlation, Dependence and Independence

In the process of researching the analytic method presented in this paper, we found
correlation can be induced between two vectors of sampled, uncorrelated variables X and Y
when one, the other, or both are transformed through a non-linear equation (i.e., a CER)
form such as y = aX?, or a triad type of CER, y = a+bX°.

Consider the two uncorrelated random variables U and V shown in Table 3-2. We will
introduce a linear transformation, W = 2 4+ 3U, and two exponential transformations,
X =U?andY = V2. A linear transformation does not change the fundamental correlation,
as seen in the correlation coefficients pyy, and pyy, (Table 3-3). Small amounts of
correlation are induced by the exponentiation of the uncorrelated random variables U and
V as seen in pyy = —0.0088, and p, x = 0.1925. Variables correlated with their squares
show a decrease in their correlation from 1.0 as seen in pyy = 0.9811 and pyy =
0.9990.

Table 3-2 Transformed Random Variable Samples

U v W=2+3U X=U Y=V*
1 4.2 4 1 17.64
2 2.1 6 4 4.41
3 1.8 8 9 3.24
4 2.2 10 16 4.84
5 4.15 12 25 17.2225

Table 3-3 Correlations between Transformed Random Variables

U \) w X Y
U 1.0000 0.0000 1.0000 0.9811 -0.0088
\) 0.0000 1.0000 0.0000 0.1924 0.9990
w 1.0000 0.0000 1.0000 0.9811 -0.0088
X 0.9811 0.1924 0.9811 1.0000 0.1828
Y -0.0088 0.9990 -0.0088 0.1828 1.0000
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This demonstration shows that while any pair of sampled vectors of random numbers may
themselves be uncorrelated, their exponentiated values are not (i.e., pyy # pyzyz). While
we may believe we have two sample vectors of independent random variables, we
probably do not. True statistical independence is a high standard of independence between
random variables and is difficult to achieve — particularly through statistical sampling. A
less stringent type of independence is “expectation independence”, in which the variables
remain uncorrelated (i.e., pyy = pykyx = 0) for any higher order of expectation

operations. “Uncorrelated” is the least stringent standard, and as our demonstration shows,
correlation can be induced through exponentiation of the random variables.

Another way RVs can be correlated is through the structure of the mathematical problem
(i.e., the functional relationship to each other directly through one equation or indirectly
through more than one equation), whether that structure is a cost estimate or a schedule
network. In a cost estimate, two CERs can be correlated through sharing a common cost
driver or where one CER drives another CER, such as a cost-on-cost factor. Garvey®
(2000) provides an analytic method of determining pxy when X and Y are random
variables representing the estimates from errorless CERs. In a schedule network, two finish
dates may have uncorrelated durations of their predecessor tasks, but will still be correlated
to each other by sharing a common predecessor. We are interested in calculating
functional correlation out of necessity when using analytic methods of uncertainty
analysis.

% Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.
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4 Probability Tools
When we use a cost model to perform a cost risk analysis, we need to know the uncertainty
of the individual cost estimates, their statistical dependencies, and how to calculate their
sums. We can employ statistical modeling techniques such as statistical simulation or
statistical analysis to find these uncertainties and their properties. Although the goal is the
same, these techniques differ, which we will discuss in more detail.

4.1 Statistical Simulation
Statistical simulation is a numerical experiment designed to provide statistical information
about the properties of a model driven by random variables. It is often used in cost and
schedule risk analysis to model the complex interaction of the transformations and
summations involved with correlated random variables.

The statistical simulation process follows these steps:

1) Define numerical experiment (spreadsheet, schedule network, etc.)
2) Define PDFs for each random variable
3) Define correlation coefficients for random variables
4) Determine the number of experimental trials
5) For each trial:
a. Draw correlated random variable(s) from defined PDF(s)

i. Sample uniform distributions, U(1,0)

ii. Transform each U(1,0) to the desired PDF based on an inverse
transformation of the cumulative density function (CDF),
denoted as CDF™.

iii. Correlate the set of PDFs

b. Compute the experimental result(s)
c. Save the experimental result(s)
6) At the end of the simulation, determine the statistics from the experimental
results

4.1.1 Sampling Techniques
Statistical simulation tools use one or more of the following sampling techniques:

e Bootstrap sampling: Re-sampling with replacement from sample data numerous
times in order to generate an empirical distribution of a statistic

e Monte Carlo sampling: New sample points are generated without taking into
account the previously generated sample points

e Latin Hypercube sampling: Each variable is divided into m equally probable
divisions and sampling is done without replacement for each set of m trials

e Orthogonal sampling: This adds the requirement that the entire sample space
must be sampled evenly

The most commonly-used statistical simulations use Monte Carlo or Latin Hypercube
sampling of correlated random variables. The reasonableness of the simulation results
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depends on the reasonableness of the user inputs, correct modeling of PDFs for all random
variables, and the correct specification of the correlation between these PDFs (even if it is
assumed to be 0). The accuracy of the simulation is highly dependent on the simulation’s
ability to draw uniformly-distributed random variables U(1,0) in step 5.a.i and to correlate
them correctly in step 5.a.iii.

4.1.1.1 Generating PDFs from Random Number Generators
A random number generator, such as the Excel RAND( ) statement, produces a uniformly-
distributed pseudo-random number between 0 and 1 (0 < U(0,1), < 1). We know that the
range of the CDF, Fy(x), for any random number is the same (i.e., 0 < Fx(x) < 1). Based
on that knowledge, the uniform draw can be transformed by the inverse of the CDF, the
CDF™, to get the desired probability distribution, f(x) as shown in Figure 4-1. The Excel
statements are fairly simple to use for this purpose, as we will demonstrate.

We can generate different PDFs using Excel to demonstrate how statistical simulations
generate differently-distributed random numbers. First, we will generate a pseudo-random
number based on a uniform distribution U(0,1), then transform it into the desired PDF
using the inverse CDF (i.e., CDF™) using simple Excel functions.

CDF(p=1,5=0.3) . CDFY(p=1,6=0.3)

Pl
o ¢
[

] 05 1 15 2 25 0 0.2 04 05 08 1
Pix)

Note: In the graph on the left, the cumulative probability, P(x), is the vertical
axis, and in the graph on the right, P(x) is the horizontal axis.
Figure 4-1 Simulating a Lognormal Distribution

In our example, 1000 uniformly-distributed numbers over the interval [0,1] were generated
using the Excel RAND( ) function. Figure 4-2 shows the histogram of the 1000 uniform
draws, which is a representation of U(0,1).
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Histogram of Transformed Random Numbers
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Figure 4-2 Simulated Uniform Distribution

The moments of the pseudo-random uniform distribution formed by the 1000 samples, the
vector Y, can be easily calculated using the following Excel statistical functions:

o u=AVERAGE(Y)
o o=STDEV(Y)

o Y=SKEW(Y)

o k=KURT(Y)

Note the kurtosis calculated by the Excel function is excess kurtosis. The moments of the
uniform samples and their exact values based on the defined uniform distribution are
shown in Table 4-1.

Table 4-1 Moments of the Simulated Uniform Distribution

Moment | Simulated | Exact
u 0.488 0.500
o 0.292 0.083
9 0.053 0.000
K -1.222 -1.200

Based on the moment statistics of the uniform distribution, it is slightly biased low (based
on the mean), somewhat unevenly distributed (based on the standard deviation), right-
skewed (based on the positive skewness), and platykurtic (based on the excess kurtosis).

A normal distribution N(1000,300) can be generated by transforming U(0,1) using the
inverse CDF of a normal distribution. The transform function (i.e., the inverse CDF of a
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normal distribution) used in this example is NORMINV (x, u, ¢),%” where x is the draw
from U(0,1), 4 = 1000, and ¢ = 300. Figure 4-3 shows the histogram of the normal PDF
formed by this procedure, and Table 4-2 shows the moments of the simulated and exact
values expected.

Histogram of Transformed Random Numbers
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Figure 4-3 Simulated Normal Distribution

Table 4-2 Moments of the Simulated Normal Distribution

Moment | Simulated Exact
u 987.7155 1000
o 303.4236 300
% 0.001349 0
K -0.12993 0

Likewise, a lognormal distribution L(1000,300) can be generated by transforming U(0,1)
using the inverse CDF of a lognormal distribution. The transform function used in this
example is LOGINV(x,P,Q).?® Before we can use the inverse lognormal transformation,

we must find P and Q, which are the log-transformed mean and sigma of the lognormal

4
distribution. The log-transformed mean, P:%ln( = )=6.8647, and the log-

H2+0-2
. a2
transformed sigma, Q = [In (1 + ﬁ) = (0.2936.

2" NORMINV/( ) is an Excel 2007 function, and NORM.INV( ) is an Excel 2010 function.
% LOGINV() is an Excel 2007 function and LOGNORM.INV( ) is an Excel 2010 function.
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Figure 4-4 shows the histogram of the lognormal PDF formed by this procedure, and Table
4-3 provides the moments of the simulated and exact values expected.

Histogram of Transformed Random Numbers
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Figure 4-4 Simulated Lognormal Distribution

Table 4-3 Moments of the Simulated Lognormal Distribution

Moment | Simulated Exact
U 988.989 1000
o 299.102 300
9 0.855934 0.927
K 1.094075 1.566

4.1.2 Correlating Random Numbers
Much literature in the statistics community exists regarding generating correlated random
numbers for use in statistical simulation, but few families of joint PDFs specified in terms
of their Pearson product-moment correlation exist. Among ones that do exist are
correlated joint normal, joint normal-lognormal and joint lognormal distributions discussed
in Garvey (2000).? Other families of joint distributions are formed through the use of
copulas — a transformation technique used to create joint probability distribution.

4.1.3 Timing of Discovery of Correlation Methods
The timing of the discovery of methods of generating correlated random numbers was an
influence on which commercially-available risk analysis tools use Pearson (product
moment) correlation vs. Spearman (rank) correlation. Commercial tools developed in the
early-1980s (i.e., @Risk and Crystal Ball) use a method of generating rank correlated

# Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.
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random numbers based on a published paper (Iman & Conover, 1982)%. In the late-1990s,
a new algorithm (Lurie & Goldberg, 1998)%" ¥ was published that provided a method of
generating Pearson-correlated random numbers. Many of the commercially available
statistical simulation tools were developed before the Lurie-Goldberg paper, so they rely
on Spearman rank correlation. However, these are limitations of using rank correlation
when performing cost risk analysis as noted in Garvey’s paper®® (1999). Only since 1998
have tools such as Risk+ for Microsoft Project been programmed with the method
presented by Lurie and Goldberg.

4.1.4 Benefits and Drawbacks of Statistical Simulation Techniques

Statistical simulation has its benefits and drawbacks. Among its benefits are 1) its ability
to provide the statistics of a simulated PDF formed by complex mathematical modeling of
random variables and 2) its relative ease of use. Quite often, statistical simulation obtains
very close results to and is easier to use than statistical analysis. However, statistical
simulation does have its drawbacks — particularly due to its 1) inability to sample
uniformly, 2) (in)ability to correlate two distributions exactly using Pearson product-
moment correlation coefficients, 3) difficulty of correlating large numbers of random
variables, and 4) inability to provide reasonable results when the number of simulation
trials is too small to account for single or combinations of low-probability events. The last
error is further exaggerated when multiplying highly-skewed random variables (e.g., the
product of two lognormal PDFs) and when performing discrete risk analysis. In these
instances, high-impact, low-probability-of-occurrence events are difficult for simulations
to adequately sample in order to produce reasonable facsimiles of the exact results.

One way to check the reasonableness of the results of a statistical simulation is to: 1)
“dump” a list of the results of the correlated random variables being modeled, 2) calculate
the resulting statistics (e.g., Pearson correlation coefficient between the variables), and 3)
find the fit statistics of the distributions being modeled. By performing a dump of the
simulated variables, an analyst will be able to ensure the simulation has created a
reasonable facsimile of the desired input distributions and output distributions (or the
calculation of the Pearson correlation between the correlated random variables) and that
they are close to that specified. Any statistical simulation tool that does not provide the
ability to examine a dump of the trials should be avoided.

30 Iman, R.L. and Conover, W.J., “A Distribution-free Approach to Inducing Rank Correlation among Input
Variables,” Communications in Statistics - Simulation, Computation, Vol. 11, No. 3(1982), pages 311-334.

. Lurie, P.M.; Goldberg, M.S., “A Method for Simulating Correlated Random Variables from Partially
Specified Distributions,” Management Science, Vol. 44, No. 2, February 1998, pages 203-218.

% Related briefing: “Simulating Correlated Random Variables,” 32nd DOD Cost Analysis Symposium, 2-5
February 1999.

¥ Garvey, P.R.,, “Do Not Use Rank Correlation in Cost Risk Analysis,” 32nd DOD Cost Analysis
Symposium, 2-5 February 1999.
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4.2 Statistical Analysis
Unlike simulation, statistical analysis relies on the exact calculation of moments of the
PDF. We will use moments as the basis of the analytical technique proposed in this report.

4.2.1 Moments
Moments are important measures of the properties of random variables, and they come in
many varieties. The three we have discussed earlier and with which we are most concerned
are raw moments, central moments and standardized moments.

4.2.2 Method of Moments

Method of Moments (MOM) is a relatively easy-to-use, analytical technique used to
calculate the moments of probability distributions. The MOM technique relies on exact
statistical calculations of moments to derive the statistics of probability distributions such
as WBS element cost estimates or schedule durations. With the widespread use of
statistical simulation tools by cost and schedule analysts, MOM has become a forgotten
“art”. One of the surviving MOM techniques is the Formal Risk Assessment of System
Cost Estimates (FRISK) method (Young, 1992).%

42.2.1 FRISK
FRISK is a MOM approach used to calculate the u and o of the PDF of total cost formed
by the statistical summation of PDFs of subordinate cost elements.

The steps used in the FRISK method are:

1. Define numerical experiment; in this case, the summation structure of a WBS
2. Define triangular PDFs, T (L;, M;, H;) for each cost, X;, or random variable to be
statistically summed, by specifying the low (L;), most likely (M;) and high

(H;) values
3. Calculate the y; and a;2 for each T(L;, M;, H;) using Equations 4-1 and 4-2
pi = (Li+M;+H)/3 4-1
0;? = (Li* + M;* + H* — L;M; — L;H; — M;H,)/18 4-2
4. Sum the n means to calculate the mean of the sum of the PDFs using Equation
4-3
Bror = Xi=1 M 4-3

5. Define correlation coefficients, p; ;, for each pair of PDFs
6. Calculate the total variance of the sum of the PDFs using Equation 4-4

Orot” = Nie1 0% + Lisj XJ21 pj0i0; 4-4
7. Assume the PDF of the total cost is a lognormal distribution, L(P, Q)

* Young, P. H. (1992). FRISK - Formal Risk Assessment of System Cost. Aerospace Design Conference.
Irvine, CA: AIAA.
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8. Calculate the lognormal parameters P and Q using Equations 4-5 and 4-6.

P=%ln(

ut

H,2+O'2

)

0= /ln(1 +Z—§)

9. Determine the percentile statistics L(P, Q)  using the inverse CDF tables or the
LOGINV function in Excel.

4-5

4-6

The outputs from an example FRISK calculation are shown in Figure 4-5.

Percentile Value
10% 517.99
20% 542.63
30% 561.12
40% 577.42
50% 593.08
60% 609.17
70% 626.86
80% 648.23
90% 679.06
Statistics Value
Mean 596.40
Median 593.08
Mode 586.50
Standard Deviation 63.18
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Figure 4-5 Example FRISK Output

FRISK is even more efficient when programmed as an Excel spreadsheet. The means and
standard deviations of triangular distribution inputs in step 3 can be calculated using
AVERAGE(L,M,H) and STDEVP(L,M,H)/2, respectively. When the series of means and
variances to be statistically summed appears in contiguous cells (rows or columns), the
following Excel functions can be used:

1. SUM(range), where range is the series of means
2. SQRT(MMULT(TRANSPOSE(a),MMULT(R 6))), where & is the range of the
vector of g; in columnar form and R is the nxn correlation matrix. This function
must be entered by pressing <CTRL> <SHIFT> <ENTER>. An example of the
correlation matrix is shown in Figure 4-6.

45



ANALYTIC METHOD FOR RISK ANALYSIS

rl1 02 02 02 02 02 0.2
02 1 02 02 02 02 0.2
02 02 1 02 02 02 0.2
02 02 02 1 02 02 02
02 02 02 02 1 02 0.2
02 02 02 02 02 1 0.2
0.2 02 02 02 02 02 1-

Figure 4-6 Example Correlation Matrix

When all y; and g; used in the statistical summation are not in contiguous cells, we can re-
create a set of contiguous cells elsewhere in the spreadsheet (or through an Excel macro) to
allow the use of the Excel functions (1 and 2) above.

Let us perform an example FRISK rollup calculation using a set of errorless estimating
relationships from Book (1994).* Assume we have modeled the cost estimates of the
WABS elements with triangular distributions as shown in Table 4-4. The parameters of the
triangular distributions are the outputs of a CER using Low, Most Likely and High cost
drivers.

Table 4-4 Example FRISK Rollup Inputs (Costs in $K)

WBS Element, i L; M; H;

Antenna 191 380 1151
Electronics 96 192 582
Platform 33 76 143
Facilities 9 18 27
Power Distribution 77 154 465
Computers 30 58 86
Environmental Control 11 22 66
Communications 58 120 182
Software 120 230 691
TOTAL 625 1250 3393

Note the naive sum of the most likely costs, M;, is $1250K.

The first WBS element, the Antenna WBS element CER, is defined by a triangular
distribution, T(191,380,1151). The mean of a triangular distribution from Equation 4-1 is

191+380+1151

S = $574K 4-7

w =L +M +H)/3=

and the standard deviation of the Antenna WBS cost using Equation 4-2 is

* Book, S. A. (1994). Do Not Sum 'Most Likely' Cost Estimates. 1994 NASA Cost Estimating Symposium.
Houston, TX.
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4-8
Of(x); = / Of ), =

J[1912+3802+11512—(191)(380)—(191)(1151)—(380)(1151)
18

| — $207.62K

Repeating this procedure for all of the WBS elements in Table 4-4 allows us to calculate
the moments (), and ogy,) for all WBS elements as shown in Table 4-5. The mean of
the total is calculated using Equation 4-3. To calculate the total cost sigma, we need to
specify a correlation matrix. For this example, we use the matrix shown in Figure 4-6. To
calculate the standard deviation of the total, we use the matrix form of Equation 4-4 to
obtain the results shown in Table 4-5.

The mean cost is $1756K, which is significantly larger than the naive sum of the most
likely costs, which is $1250K (Book, 1994).%

Table 4-5 Example FRISK Rollup (costs in $K)

WBS Element, i Estimate, f(x); K (x); Os(x);
Antenna T(191,380,1151) 574 207.62
Electronics T(96,192,582) 290 105.08
Platform T(33,76,143) 84 22.63
Facilities T(9,18,27) 18 3.67
Power Distribution T(77,154,465) 232 83.86
Computers T(30,58,86) 58 11.43
Environmental Control T(11,22,66) 33 11.88
Communications T(58,120,182) 120 25.31
Software T(120,230,691) 347 123.68
TOTAL (Not necessarily the sum) 1756 364.93

We quantify the percentile value of the sum of the most likely costs by forming a CDF. If
we assume the total cost of our estimate is lognormally distributed, we can compute the
lognormal distribution parameters (P = 7.4497 and Q = 0.2056) using Equations 4-5 and
4-6.

A quick calculation using the lognormal distribution functions in Excel tells us the
percentile of the naive sum of most likely costs. The equation and results are:

LOGNORM.DIST (1250, P, @, TRUE) =0.060553=6.0553%

This is why we model estimates probabilistically. 1t would be very difficult to defend an
estimate at the 6™ percentile and unwise to want it in the first place!

% 1bid.
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Using the inverse of the lognormal distribution, we find the cost value at any probability
level on the CDF. This is a very simple way of quickly forming CDFs such as the one
shown in Figure 4-7.

FRISK Example
1
0.8
X 07 /
a /
= 0.6 V4
£ 4/ 1756, 54.09%
)
S 0.4
03 /
Q.
02 /
LT 1250, 6.06%
O T 1 ' T T T T 1
0 500 1000 1500 2000 2500 3000 3500

Cost, x

Figure 4-7 FRISK Example CDF

4.2.2.2 Enhancements to FRISK

4.3

FRISK is an elegant way to model the simple statistical summation of a cost estimate.
However, to be fully effective as a tool to exactly and efficiently analyze a cost estimate,
we need to be able to accommodate 1) statistical summation of non-adjacent cells; 2)
inputs that are non-triangularly distributed, such as normal or lognormal distributions; 3)
modeling CER cost-driver uncertainties, 4) transformation of cost-driver PDFs by a CER,
5) modeling the additive or multiplicative error of the CER, and 6) multi-level summations
as in the case of a complex WBS. Fortunately, solutions to these issues are available from
the literature (Covert R. P., 2006).%

MOM Operations and Analytic Method Description
This section describes the mathematical treatment of these operations on random variables
and provides methods of calculating the moments.

4.3.1 Addition and Subtraction of Random Variables

The simplest mathematical operation with which we will be concerned is the statistical
summation and subtraction of random variables.

As we discussed in Section 3.2.1 the WBS defines the summation of individual WBS
elements to higher hierarchical levels. Similarly, in Section 3.3.2.1, the serial arrangement
of schedule tasks allows us to statistically sum their durations. Both mathematical

% Covert, R. P. (2006). Correlations in Cost Risk Analysis. 2006 Annual SCEA Conference. Tysons Corner,
VA.
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problems are treated with the same statistical summation technique. Let X; be the cost (or
duration) of an individual WBS element (or serially arranged set of schedule tasks), and X
be the sum of individual WBS elements, i. Then the mean of WBS element i is the
expected value E[-] of the random variable, X;.

w; = E[X;] 4-9

So the mean of the sum of individual WBS elements is the total mean, u;

ur = E[XiL; X] = XL, E[Xj] 4-10

More simply put, the mean of the sum is the sum of the means.

The total variance, o2, of the sum of the WBS elements is the square of the standard
deviation of the total, o7

or? = Var(Xt) = XL, ;% + s X pi0i0; 4-11

In expectation parlance, Equations 4-12 and 4-13 are the expected values of the sum and
difference of two random variables.*®

E[X +Y] = E[X] + E[Y] 4-12
E[X — Y] = E[X] — E[Y] 4-13

Equations 4-14 and 4-15 are the variances of the sum and difference of two random
variables. Less intuitive is the variance resulting from the difference of two random
variables. Equation 4-15 is similar to Equation 4-14 except the covariance term
2Cov(X,Y) is subtracted from the sum of the variances of X and Y.

Var[X + Y] = Var[X] + Var[Y] + 2Cov(X,Y) 4-14
Var[X = Y] =Var[X] + Var[Y] — 2Cov(X,Y) 4-15

The shape of the distribution formed by the sum and difference of lognormally distributed
random variables is discussed in the applied statistics literature (Lo, 2012).%*° It is agreed
that the shape of the sum or difference of two correlated lognormal variables are neither
normal nor lognormal, but an approximate shape can be derived from the parameters of the
distributions.

% When calculating the criticality index (CI) of a schedule task, we must evaluate the integral of the
difference of random variables.

¥ Lo, C. F., The Sum and Difference of Two Lognormal Random Variables (May 22, 2012). Available at
SSRN: http://ssrn.com/abstract=2064829 or http://dx.doi.org/10.2139/ssrn.2064829
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The parameters of interest when subtracting one lognormally distributed PDF from another
are: the correlation between the two PDFs, and their respective means and standard
deviations (or variances). These parameters not only determine the mean and variance of
the PDF formed by their difference but also the skewness and kurtosis of the same. To
estimate the shape of the distribution formed by subtracting one RV from another, we use
the results of a numerical experiment (i.e., a 100,000-trial statistical simulation).

The numerical experiment uses four PDFs defined as lognormal distributions: A = L(1,1),
B =1L(1,0.5), C =L(2,1), and D = L(2,0.5). Table 4-6 shows the difference between
uncorrelated pairs (i.e., p = 0) of 4, B, C, and D. We show the mean, standard deviation,
skewness, kurtosis and shape of the PDF-defined difference in each of the twelve cases.

Table 4-6 Difference of Two Uncorrelated PDFs

Case Difference u G J K Fit Shape
1 A—B 0.000 1.1159 2.613 | 22.771 Logistic
2 A—-C -1.000 1.4152 0.772 | 11.785 Student's t
3 A—-D -1.000 1.1151 2.652 22.033 Max Extreme
4 B—A 0.000 1.1159 -2.613 | 22.771 Logistic
5 B—-C -1.000 1.1177 -1.022 6.381 Logistic
6 B—-D -1.000 0.7070 0.299 4.471 Logistic
7 c—-A 1.000 1.4152 -0.772 | 11.785 Student's t
8 C—-B 1.000 1.1177 1.022 6.381 Lognormal
9 c—-D 0.000 1.1198 1.099 6.263 Lognormal
10 D—-A 1.000 1.1151 -2.652 | 22.033 Weibull
11 D—-B 1.000 0.7070 -0.299 4.471 Logistic
12 D-C 0.000 1.1198 -1.099 6.263 Weibull

A lognormal PDF is defined by its mean and standard deviation, is right skewed, and it is
supported over the range of real values[0,c0]. The mean and standard deviation are
always positive real numbers, so a lognormal PDF must have a positive mean and positive
skewness. Only case 8 in Table 4-6 can be considered an approximation to a true
lognormal distribution based on its mean and skewness. Case 5 produces a mirror image
of case 8, so it is considered to be a “negative lognormal distribution”.

We can use the knowledge that if the difference of two RVs (i.e., X-Y) produces a negative
lognormal distribution, then all of the area of the PDF of X-Y is in the negative axis. Since
this is true, Y-X is a lognormal distribution, and all of its area lies on the positive real axis.

We have considered the uncorrelated case thus far, but when X and Y are highly
correlated, the difference of two RVs (i.e., X-Y) produces a distribution that is less skewed
and has the properties of a normal distribution.

We use the following rules to determine the approximate shape of the resulting
distribution:
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1. If X has a larger variance than Y, then we expect X to dominate the variance of the
distribution X — Y. The resulting distribution will have positive skewness.
a. If oy > oy, then k >0.
b. Conversely, if gy < gy, then kK <0.
2. If the mean of X is larger than the mean of Y, the mean of X — Y will be positive.
a. If uy > py and oy > oy, then X —Y will be approximately lognormally
distributed.
b. If uy < uy and oy < agy, then X —Y can be approximated by a negative-
lognormal distribution.
3. If uy <puy andoy > gy, then X —Y can be approximated by a left-shifted
lognormal distribution.
4. If pyy is large (pxy~0.7) or greater, then the distribution formed can be
approximated by a normal distribution.

4.3.2 Covariance of Random Variables
When we are calculating the means and variances of CERs that rely on cost drivers that are
random variables, we are interested in the functional transformation of the PDFs by the
CER and the inclusion of the CER’s error. To accurately calculate the moments of the
CERs in the cost model, we must know how the CER and its error are correlated (or how
they “covary”) with each other in order to properly perform statistical summation.

Covariance is defined in Equation 4-16. Note that it is the expected value of the product of
the differences of the random variables and their respective means. It is also defined in
Equation 4-17 as the expected value of the product of the random variables minus the
product of their means.

Cov(X,Y) = axy = E[(X — pux) (Y — piy)] 4-16
Cov(X,Y) = E[XY] — uyuy, and 4-17
Cov(X,X) = Var(X) = E[X?] — E[X]?

The correlation coefficient py, in Equation 4-18 is the product-moment correlation
coefficient, which relates Cov(X,Y) to the product of the standard deviations of X and Y.
This is the same Pearson product-moment correlation coefficient used in FRISK’s
statistical summation.

E[XY] = pxyoxoy + pxity 4-18

Two important theorems to remember are:

If X,Y are independent, then Cov(X,Y) = 0, 4-19
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and the symmetry of covariance of Equation 4-20 requires us to only define the upper or
lower off-diagonal elements of the correlation matrix (Figure 4-6), since p; ; = p; ;.

Cov(X,Y) = Cov(Y,X) 4-20

The bilinearity property of covariance means the following is true:

Cov(aX + b,cY +d) = acCov(X,Y) 4-21
Cov(X; +X,,Y) = Cov(Xy,Y) + Cov(X,,Y) and 4-22
Cov(X,Y, +Y,) = Cov(X,Y;) + Cov(X,Y;)

4.3.3 Transformation of Random Variables
When using linear CERs (and factors) such asy = a + bX, uy is shifted by the additive
term (a) and scaled by the multiplicative term (b) (Equation 4-23), and the variance is
scaled by the square of the multiplicative term (b) (Equation 4-24).

E(a+bX)=a+bEX) =a+ buy 4-23
Var(a + bX) = (b®)Var(X) = b?0y? 4-24

When linear transformations are applied to pairs of correlated random variables, the
covariance is unaffected by the additive terms and is scaled by the multiplicative terms
(Equation 4-25).

Cov(a+ bX,c +dY) = (bd)Cov(X,Y) 4-25

We can calculate the correlation coefficient between two random variables, such as two
CERs that share a common cost driver, using Equation 4-26.

Corr(X,Y) = pyy = %, and 4-26
__ Cov(X)Y)
Pxy = p——

To do this with a pair of CERs, we will need to determine the mean and sigma values for
both CERs and the term E[XY]. The E[XY] term is the expected value of the product of X
and Y, which is why we call Pearson correlations “product-moment” correlations.

When nonlinear transformations are performed on random variables, as in the case where a
CER, Y, is expressed as a function of a random variable, X:

Y = f(X) = (a + bX°) ; where 4-27
a, b, and c are coefficients of the CER with (Var(-) = 0),

The terms uy oy are computed as follows:

52



ANALYTIC METHOD FOR RISK ANALYSIS

Uy = Ugrpxe = E[a + bX€] = a + bE[X‘] 4-28
oy = +/Var(Y) = /Var(a + bX°) 4-29

Since the variance of a constant is 0, Var(a;) = 0,

oy = /b*Var(X¢) = b\/Var(X©), 4-30
If Z =x¢and Var(Z) = E[Z?] — E[Z]? then
Var(X€) = E[(X)?] — (E[X°])? = E[X*°] — (E[X°])? 4-31

The expectation E[Xk] is dependent on the shape of the probability distribution of X. In
this case, if X is a triangular distribution, X = T(L, M, H), then

EXt = = 2

2 {Mk+2_Lk+2 L Mk+1_Lk+1} 2 { gl+1_prk+1 Hk+2_Mk+2}

(H-L)(M-L) k+z k+1 (H-L)(H-M)

Substituting k with ¢, we obtain:

c 2 1 MC+2_LC+2 MC+1_LC+1 1 HC+1_MC+1 HC+2_MC+2
E[x] = (H-L) [(M—L){ reE e } (H—M){ c+1 c+2 }]
and
2b MC+2_LC+2 MC+1_LC+1 2b HC+1_MC+1 HC+2_MC+2
py =a+ (H—L)(M—L){ oz LT en } (H—L)(H—M){ c+1 c+2 }
Sok Yb_a = E[X¢] and Var(X¢) can be rewritten as:
—an2
Var(X¢) = E[X%] — (”fT)
2¢ _ 2 [ 1 {M2C+2_L2C+2 _ M2C+1_L2C+1} 1 { H2C+1_M2C+1 _
Var(X ) (H-L) L(M-L) 2c+2 2c+1 (H—M) 2c+1
H2C+2_M2C+2 Mf_a 2
2c+2 }] _( b )
Using Equation 4-30,
O-Y -
2 1 M2Ct+2_2¢c+2 M2ct1l_j2c+1 1 H2¢+1_pp2¢c+1 H2¢+2_pp2c+2 ur—a 2
(H-L) [(M—L){ 2042 2c+1 } (H—M){ 2041 2c+2 }] N ( b )

This is a rather lengthy equation, so VBA expressions are provided in Appendix D.

From this point forward, where a VBA function exists, such as for E[X¥], we will leave
any expansions of equations in terms of E [X k].
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We often rely on the calculation of the higher-order moments to determine probability
distributions used in estimating relationships. The k™ moment of the RV X is

E[X*] = { OZOZXJ;"PX(x) ;l:fX l:S discr'ete 4-32
S x*fx(x)dx ;if X is continuous

In summary, we can use the equations for expected value, variance, and covariance to find

the moments of a distribution and the covariance (and correlation between random

variables). Another simpler way of dealing with complex transformations of independent

random variables is through the use of Mellin transforms (Section 6).

4.3.4 Multiplication and Division of Random Variables

Often, we are interested in the moments of the PDF of the product or transformation of
multiple random variables in an equation such as a CER. Three methods of finding the
moments in this situation are the use of: 1) expectation operations, 2) Mellin transforms
and 3) propagation of errors. The first method is an extension of the expectation operations
shown in Section 4.3.2, and the last two methods are discussed in greater detail in Sections
6 and 7. Section 5 provides a general formula for the variance of the product of two or
more random variables.
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5 Product of Dependent Random Variables

5.1

The moments of the PDF formed by the product of two dependent random variables are
used frequently in probabilistic cost analysis. Products of random variables are found in
probabilistic cost estimates using CERs that have correlated error terms, or when using
cost-dependent CERs. Products of multiple random variables occur when calculating the
correlation coefficient between different WBS elements. We first provide equations for
the moments of the product of two jointly normal random variables, then follow with the
case in which we have two jointly lognormal random variables. Using the methods used to
derive these equations, we provide equations for the moments of the product of multiple
random variables.

Product of Two Normal Random Variables
In the first case, we derive the moments of the product of two random variables that are
defined using normal PDFs. If X and Y are jointly dependent random variables defined by:

X =uy +roxyZ +vV1—r?2oxE;,andY = py + royZ + V1 —r?oyE,

where Z,E;, and E, are independent, standard normal PDFs (i.e., N(0,1)), then their
covariances are zero. This means Cov(Z,E;) = 0, Cov(Z,E,) = 0, and Cov(E,, E,) = 0.
We can further state the means of X and Y are E[X] = uy, E[Y] = uy. The variances of X
and Y are Var(X) = ox?, Var(Y) = oy?. Finally, we define ¢ = Cov(X,Y) = r2oyoy.
r? = pyy by definition.

The expected value of the product XY is:

E[XY] = Cov(X,Y) + E[X]E[Y] = px yoxoy + uxpy using Equation 4-18.
The variance of the product is found through some manipulation:

Var[XY] = E[(XY)?] — E2[XY]

E[(XY)?] = Cov(X? Y?) + E[X?]E[Y?]

Var[XY] = Cov(X?,Y?) + E[X?]E[Y?] — (Cov(X,Y) + E[X]E[Y])?

Var[XY] = Cov(X2,Y?2) + E[X?]E[Y?] — (Cov?(X,Y) + 2E[X]E[Y]Cov(X,Y) +
E?[X]E*[Y])

Var[XY] = Cov(X?,Y?) + E[X?]E[Y?] — Cov?(X,Y) — 2E[X]E[Y]Cov(X,Y) —
E*[X]E?[Y]

E[XZ] = ‘UXZ + O-Xz and E[YZ] = ‘uyz + O-yz
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Var[XY] = Cov(X?,Y?) + (ux® + 0x*) (uy” + 0y*) — Cov*(X,Y) — 2uxpiyr*ox 0y —
iy phy?
Var[XY] = Cov(X2,Y?) + puy2uy®+iux20oy? + oy’ tty® + ox?ay” — ¢ — 2uypiyc —
txuy”

Var[XY] = Cov(X?,Y®)+uyloy? + ox’uy? + 5-1

2, 2 2
Ox“0y — ¢ — 2uxpiyC

This is the same result obtained by (Goodman, L. A., 1960) and (Bohrnstedt & Goldberger,

To solve the Cov(X?,Y?) term, we must expand the squares of X and Y, use the definition
of covariance provided in Equation 4-17, and insert that result into Equation 5-1. This
derivation is provided in Appendix C — Derivations, Section 16.3.7. The resulting
covariance term is

Cov(X?2,Y?) = 4uyuyc + 2c¢?
This allows us to express the variance of the product of two normally distributed PDFs as:
Var[XY] = dpgpyc + 22 +uy0y? + 0y’ ly® + ax?ay” — (€)2 — 2uxpiyc
This simplifies to Equation 5-2.

Var[XY] = 2uxuyc + c?+uyloy? + oy?uy? + oy2oy? 5-2
When X and Y are independent, ¢ = 0, Equation 5-2 reduces to Equation 5-3.

Var[XY] = ux2oy? + ox’uy? + ox’oy? 5-3

When Y = X, ¢ = 052, Equation 5-2 becomes Equation 5-4.
VaT‘[XZ] = ZO-XZ(ZIUXZ + O-XZ) 5'4
Product of Two Lognormal PDFs

In the case where we are interested in the product of two lognormal PDFs, we cannot rely
on the symmetric properties of the normal distribution to cancel terms and also cannot rely

“© Goodman, L. A. (1960, Dec.). On the Exact Variance of Products. Journal of the American Statistical
Association, 55(292), 708-713.

! Bohrnstedt, G. W., & Goldberger, A. S. (1969, Dec.). On the Exact Covariance of Products of Random
Variables. Journal of the American Statistical Association, 64(328), 1439-1442.
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on the standard normal distributions zero-mean properties to manipulate the equations. We
must rely on the fact that the lognormal distribution is related to the exponent of an
underlying normal distribution.

If X; and X, are jointly distributed normal random variables with py x ,thenY; and Y, are
jointly distributed lognormal random variables with py, v, and¥; = e*1, and ¥, = e*2. If

X; and X, are defined by N(P;,Q;), and N(P,,Q,), thenY; and Y, are defined by
L(uy,, oy,), and L(py,, oy,), respectively.*? The mean and variance of ¥; and Y, are:

1
fy, = e(Pi+EQi2) and oy, = e(2Pi+af) (eQiZ — 1) and

Px.x, = ﬁln [1 + vy, (\/le —1/e% — 1)]

The product Z = Y, Y, = eX1eXz = eX1tXz g0 the distribution of In(Z) has mean:
E[In(Z)] = P, + P,, and variance, [In(2)] = Q% = QF + 2px, x,0:1Q, + Q5 .

Therefore, the mean and variance of Z = Y, Y, is:

(tPr+Po)43[0F +20x, x,0102+03]) ong 5-5

Hz =€
02 = e(2IPi+P]+[QF +2px,,x,0102+G3]) (e[Q%+2px1,x201@z+Q§] — 1) 5-6

Equation 5-5 is an exact solution of the variance of the product of two lognormal
distributions. Results of the exact standard deviation using the square-root of the variance
calculation using Equation 5-5 are compared to a 100,000-trial statistical simulation in
Table 5-1. The simulated mean of the product is low compared to the exact result due to
the inability to correlate the two RVs to exactly p = 0.5. The simulated standard deviation
is slightly lower than the exact result due to uneven sampling of the lognormal PDFs.

Table 5-1 Analytic and Simulated Results of the Product of Two Lognormal PDFs

Analytic Simulated
u g Py, y, u o Pyyy,
Y 1.000 1.000 0.500 0.999 0.999 0.432
Y, 1.000 1.000 0.999 0.999
Y;Y, 1.500 4.243 1.430 3.749

*2 Lognormal Distributions: Theory and Applications
Edwin L. Crow, Kunio Shimizu, 1988. Marcel Dekker, NY, Statistics, textbooks and monographs Series,
vol. 88, p14-17.
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When Y; and Y, are independent, py, y, = 0, so the mean and variance of Z are:

1
y = e([P1+P2]+§[Qf+2Q1Q2+Q§]), and

02 = e(2[P1+P2]+[Q%+Q%])(e[Qf+Q§] -1) 5-8
To calculate the moments of the square of Y;, we can set Y; =Y, SO uy, = uy,, py, v, = 1.
The resulting mean and variance of Z are:

Uy = eZ(P1+ZQ%), and 5-9

GZZ = e(2P1+4Q%)(e[4Q%] — 1) 5-10

Additionally, whenuy, =1, and oy, =1 (i.e., Y; is a unit lognormal distribution, Y; =
L(1,1)), then Var[v,?] = 60.

Since oy, = /Var[le], oy, = V60, or 7.7459667.

Comparing these results to a statistical simulation, we get similar means but different
standard deviations as shown in Table 5-2.

Table 5-2 Analytic and Simulated Results of the Square of Two Lognormal PDFs

Analytic Simulated
7} g n g
Y, 1.000 1.000 1.000 1.005
le 2.000 7.746 2.010 8.900

The difference between the sigma values from the analytic (exact) answer and the
simulated (approximate) answer is due to the simulation’s sampling of the lognormal PDF.
Since none of the error can be attributed to the correlation between random variables (i.e.,
it is a square of a single RV), it must be due to the ability of the simulation to sample the
large tails of the lognormal PDFs. Looking at the results of the variance from 10
simulation runs of 100,000 trials each shows the simulated variance is biased low and there
is a large standard deviation of results of the variance of ;2. This is due to the fact that
sampling highly skewed distributions will always be difficult for simulations, so
simulations cannot always be trusted in these situations. It is best to check your
simulation’s results to see that the simulation has reproduced the correct Pearson
correlation coefficient and that the means and standard deviations of the inputs and product
are correctly computed.

58
©2012 Covarus, LLC. All rights reserved



ANALYTIC METHOD FOR RISK ANALYSIS

Table 5-3 Ten Simulated Sample Runs of Variance of LN PDF Squared

Simulation Simulation
Run Var(Y;% Run Var(Y;%
1 49.894 6 63.005
2 54.359 7 58.854
3 47.536 8 57.698
4 51.769 9 57.165
5 87.246 10 49.030
Myarr 57.656
aVar(le) 11.491

5.3 Product of Exponentiated Lognormal PDFs
In some cases, it may become necessary to calculate the product of two lognormal PDFs
that are exponentiated. Exponentiation of a lognormal PDF Y; by some constant exponent,
c, (i.e., YY) is equivalent to multiplying its underlying normal distribution by c.

c — ,cX
Y =e“1

If the distribution X; has mean P;and standard deviation Q,, then the distribution cX;will
have mean cP;and standard deviation cQ,. If we multiply two exponentiated lognormal
PDFs Y; and Y, by exponents ¢ and d, we can compute the mean and variance of the
resulting distribution, Z = YfY#, using the exponents of the underlying normal
distributions of ¥; and Y,, which are X; and X,.

Z — chyzd — eCX]_edXZ — e(CX1+dX2)
With the mean and variance of the underlying normal distribution,
PZ = CPX1 + dPXZ and Q% = CZQ)Z(l + 2pX1rX2CdQX1QX2 + dZQ)Z(Z

the correlation between the underlying normal PDFs, py y,, Will be unaffected by the

affine transformation*® of the underlying normal distribution. The correlation between the
lognormal PDFs, py, v,, Will also remain unchanged. The correlation between the variables

UandV (pyy), where U = Y and V = Y, will be different from that of Py, v,» however.

¥ An affine transformation does not change the properties of the variable(s) undergoing the transformation.
For example, the correlation between two RVs is unchanged when either (or both) undergo a linear
transformation. That linear transformation is considered an affine transformation.
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5.3.1 Correlation Between Exponentiated Lognormal PDFs

5.4

Using the derivation above, the exponentiated lognormal RVs undergo a non-affine
transformation, meaning their relationship to each other changes. In the case of the
product of lognormal RVs, Z = UV = YY£, the correlation py , is calculated using:

e(Cde1rX2QX1QX2)—1
2 2
Je(CQX1) _1\/e(dQX2) -1

As an example, We will exponentiate two lognormal PDFs (Y; and Y,) defined by L(1,0.5)
with correlation py, y, = 0.5. We wish to find the correlation, p,,, where U =Y,

V=Yf c=0.9, and d = 1.2. First we must find Q;and Q, where:

Puy =

py;*+oy,?

by;?

Q; = ln[ ] , Which results in Q; = 0.4724 and Q, = 0.4724.

Next we calculate px, x, using px, x, = ﬁln [1 + Pv,y, (\/le —1Ve® — 1)]

1
- 1
PxiuX2 = 0.4724)(0.4724) |

1+ (0.5)(¥V1.25-1V1.25-1)] = 0.5278

Last, we have the correlation between U and V:

e ([0.9][1.2][0.5278][0.4724][0.4724]) _q

= 0.4951.

Puy = Ve (10910472412 _ 1,/ o ([0.4724][0.4724])2 _¢
Product of Multiple Lognormal PDFs

In the case where cost-on-cost factors are used in a probabilistic cost estimate, the
correlation between a WBS element that is estimated using a cost-on-cost factor and its
base is governed by the expected value of the product of multiple random variables.

We use the case where we have three random variables representing the multiplicative
uncertainties of three CERs, €,, €, and €5. The products used in the correlation matrix may
include the following terms: g, €,¢5, £,%¢,, €,%¢,£5, among others.

The expectation of any combination or exponentiation of products of €;, &,, or &5 is derived
using a set of jointly dependent lognormally distributed PDFs defined by their respective
means and variances. In the case of the triple productZ = ¢,&,¢5, the mean of the
underlying normal distribution formed by the triple product is:

E[ln(Z2)] =X P;
and the variance is
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Var[in(2)] = ¥ Q;% + Yz Xk Px,x,QiQ » Where

Pxyxi = ﬁln [1 + Pgi,gk(\/eQiz - 1\/eQ1% — 1)]

fy = e(ZPi%Z Qj2+2i¢k2kpxi,kuiQk) and 5-11
o2 = e(ZZPi+Z Qj2+2i¢k2kpxi,XinQk) (eZ Qi +Zizk Tk Px; %, QiQu _ 1) 5-12

Limitations of Statistical Simulations

Statistical simulations, due to their inability to perfectly sample correlated random
variables will produce some error, of course. To test these errors, we defined three
lognormally distributed random variables ¢, ,, and e;with a lognormal PDF, L(1,0.5),
and defined their inter-element correlation, p., ., = 0.5. We then calculated the
expectations of the products discussed above using the analytic method and with a
100,000-trial statistical simulation. The results are shown in Table 5-4. Over the 10
different simulation runs, the average of the means (1.414) was less than that of the
analytic (true) result (1.424). Also, the average of the variances from the 10 runs (5.776)
was less than that of the analytic (true) result (6.000). The simulations produced a wide
range of variances represented by the standard deviation of the simulated variance results
(0.229).

Table 5-4 Ten Simulated Sample Runs of Variance of Triple Product of LN PDF

Simulation Simulation
Run E(Z) Var(Z) Run E(Z) Var(Z)

1| 1.409 5.435 6 1.416 6.100
2| 1.412 5.534 7 1.410 5.593
3| 1.418 5.923 8 1.411 5.573
4 | 1.417 6.053 9 1.417 5.818
5| 1.415 5.880 10 1.413 5.853

Average 1.414 5.776 Analytic 1.424 6.000

Std. Dev. 0.003 0.229
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6 Mellin Transforms

6.1

A Mellin transform is a type of integral transform that allows us to find the moments of
user-specified random variables or functions of random variables, such as CERs. This is
particularly useful in uncertainty analysis because we often need to find the moments of 1)
the product of two or more independent random variables, and 2) transformations of
random variables (e.g., exponentiation).

As with anything that looks “too good to be true”, there are restrictions on its use. We will
first define Mellin transforms, show how to use them and provide an example. The Mellin
Transform** *° of a function f(X), where X is a positive random variable, is defined as:

My(s) = M[f(X);s] = fooo x5 f (x)dx, x > 0, where 6-1
My (s) is the Mellin transform of f(X), and
s is the order of the transform

As with the Fourier and Laplace transforms, there is a one-to-one correspondence between
My (s) and f(X). When f(X) is a PDF, we can see the relationship between the Mellin
transform of a PDF and the moments about the origin ' as:

s = E[X*71] = Mx(s) 6-2

Mellin Transform Properties

Mellin transforms allow us to calculate moments of results of operations on independent
random variables. Table 6-1 shows the Mellin transforms of simple operations on single
independent random variables.

Table 6-1 Operation Properties of Mellin Transform on a PDF

Property PDF RV Mellin Transform
a. Standard f(x) X My (s)
b. Scaling f(ax) X a9 My (s)
b. Linear af (x) X aMy(s)
d. Translation x%f(x) X My(a+s)
e. Exponentiation f(x% X aY My (s/a)

Table 6-2 shows the Mellin transforms of more complex operations on single and multiple
independent random variables.

* Giffin, W.C., Transform Techniques for Probability Modeling, Academic Press, 1975.
** Springer, M.D., The Algebra of Random Variables, John Wiley and Sons, 1979.
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Table 6-2 Mellin Transform of Products and Quotients of Random Variables

Random Variable PDF Given M,(s) =
a. Z=X f(x) Mk (s)
b. Z=x" f(x) My(bs —b +1)
C. Z=1/X f(x) My(2 —5s)
d. Z=XY f),9() M (s)My (s)
e. Z=XIY f(x), 9(y) My ($)My (2 — 5)
f. Z=aX"Y" f), 9 aCS DMy (bs — b + DMy (cs — ¢ + 1)

6.2

6.3

6.4

Mellin Transform of the Uniform Distribution
The uniform distribution, U(L, H), has a PDF defined by:

fF)=1/(H-L); L<x<H

and a Mellin transform defined by

_ (HS_LS)
T s(H-L)

M[f(x);s]

Mellin Transform of the Triangular Distribution
The triangular distribution, T (L, M, H), has a PDF defined by:

2 g <x<M
) H-L)(M-L)
T2 2wy
(H-L)(H-M) S XS
and a Mellin transform defined by
. _ 2 H(HS-M5) _ L(MS-LS)
MIf(x);s] = [(H—L)s(s+1)]{ (H-M) (M-L) }

Mellin Transform Example

In this example, we will apply Mellin transforms to a multivariate CER*® with error:

Y = aX,’X,¢ e, where

Y is cost, a random variable (RV)

a, b, and c are constants, a = 0.1,b = 0.95, and ¢ = 0.60
X, is acost driver thatisa RV, X; = T(9,10,15)

X, is a cost driver that is a RV, X, = T(30,40,60)

*® The CER’s cost drivers and inputs are uncorrelated (all pij = 0).
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€ is the percent standard error of the CER, a RV, € = N(1,0.3)

This CER has two cost drivers that are random variables (X; and X,) and a CER standard
percent error, . We will split the problem into pieces; one piece will be the term f(x) =
aX,%X,¢, and the other will be the error term, «.

Remember, when s = 2, we are calculating the first moment (mean) and when s = 3 we
are calculating the second raw moment (i.e., about the origin) and have to correct for the
mean to get the second moment about the mean.

To solve this problem, we will follow these steps:

1. Find the appropriate Mellin transforms of a PDF (Equation 6-6)

2. Calculate the Mellin transforms for each operation as shown in Table 6-1 and
Table 6-2.

3. Determine the mean and sigma values from the Mellin transform

In the first step, we need to find the Mellin transform of f(x) and & for orders s = 2 and
s = 3, then apply the rule from multiplying RVs f(x) and «.

Let us begin with defining M[f (x); s] for X;, which is a triangular distribution, so:

M[Xq;s] = M[T(L,M,H);s] =

2 {H(HS—MS) _ L(MS—LS)}
[(H-L)s(s+1)] U (H-M) (M-L)

We must now find M [f (x); 2]and M [f (x); 3], where f(x) = aX,°X,¢. From Table 6-2,

M[f(x);s] = a(s_l)J\/[X1 (bs — b + 1)My, (cs — ¢ + 1), where b=0.95 and ¢=0.6
MIf(x);s] = a® DMy (0.95s — 0.95 + 1) My, (0.6s — 0.6 + 1)
M[f(x); s]= aS Y My, (0.95s + 0.05) My, (0.6s + 0.4)

H(H(1.95)_M(1.95))

= = — 2 (H-M)
For's =2, My, (0955 +0.05) = My, (1.95) = [(H-1)(1.95)(2.95)] | _ L(MO-29)-1(99))
Y
. — 2 15(1595-10%5)  9(10'95-9195))
MX,;1.95] = [(15—9)(1.95)(2.95)]{ (15-10) (10-9) } = 10.035

Using the same formula, for order s = 2.95,
MI[X,;2.95] = M[T(9,10,15); 2.95] = 101.911.

Since My, (0.6s + 0.4), we have to find M [X,; 1.6], and M'[X;; 2.2]. X, is a PDF defined
by a triangular distribution, T(30,40,60), so

M[X,;1.6] = M[T(30,40,60); 1.6] = 9.572, and M[X,;2.2] = M[T(30,40,60); 2.2] =
92.312.
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Now we can multiply the terms to find M'[f (x); 2]and M'[f (x); 3]

M[f(x); 2] = aP My, (1.05)My, (1.6) = (0.1)(10.035)(101.911) = 9.606 , and
M[f(x);3] = aPMy, (3)My,(3) = (0.01)(9.572)(92.312) = 94.076.

The mean and sigma of f(x) are:

Uree) = M[f(x); 2] = 9.606,
Var(f(x)) = MI[f(x); 3]- M[f(x); 2])? = 94.076 — (9.606) = 1.8089, and

0 = . |Var(f(x)) = V1.8089 = 1.345.

Finally, we have to calculate the Mellin transformation of ¢ to complete our example
problem. Unfortunately, the Mellin transform for a normal distribution is not defined over
the entire range, only from 0 to +oo (i.e., non-negative values), so we must find a way to

overcome this limitation. But fortunately, we already know the mean and sigma of ¢ and
can “back out” M (&; 2) and M (¢; 3).

We already know the mean and sigma of ¢ by its definition as the multiplicative standard
error, N(1,0.3). Given this information,

M(e;2) = u, = 1.0,and
Mleg; 3] = Var(e) + (Mg, 2])? = 0.2 + u2 = (1) + (0.3%2) = 1.009.

From Table 6-2, M'[Ye; s] = M[Y;s]M]g; s], so:

MY;2] = M[f(x); 2] M [g; 2] = (9.606)(1) = 9.606, and
MY;3] = M[f(x); 3]M[g; 3] = (94.076)(1.09) = 102.543.

The exact mean and sigma values are:

Kyey = MY;2] = 9.606,

Oye) = JM[Y; 3]- (M[Y,2])? = /102.543 — (9.606)% = v/10.276 = 3.206.

The mean and standard deviation from a 100,000-trial statistical simulation using the
parameters specified in Equation 6-7 result in:

ﬁ(yg) =9.60, and 6(Y£) = 3.19

Since the Mellin transform method provides the exact value, the differences are due to
simulation errors. Indeed, a dump of the trial values for X;, X,, and & followed by a
calculation of their inter-element correlations reveals that p # I (i.e., the correlation matrix
does not equal the identity matrix) as shown in Table 6-3. This means some of the error in
the simulation is due to its inability to sample (un)correlated random variables.
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Table 6-3 Correlation Coefficients from 100,000-Trial Statistical Simulation

& X1 XZ

€ | 1.0000 -0.0031 -0.0111
X1 | -0.0031 1.0000 -0.0038
X, |-0.0111 -0.0038 1.0000
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7 Propagation of Errors
Cost analysts often need to find the moments of the product of two uncorrelated random
independent variables such as a CER and its percent error.*” For example,

Y = f(x)e; where

x is a random variable describing the input (e.g., weight)
f(x) is an estimating relationship with x as an independent variable
€ is a random variable describing the estimating error

The “Propagation of Errors” method allows us to calculate the mean and sigma values of
the product of two uncorrelated random variables A and B.*® Proof of this is provided in
Appendix C — Derivations.

Hap = Uallp 7-1
Opp = \/(MAUB)Z + (oaup)? + (0405)? 7-2

For our example problem, we will break the CER and its error into two parts, A and B,
where A = f(x) and B = €. In this case,

Hap = Hf(x)He 7-3

7-4
Oap = \/ (P‘f(x)UE)Z + (Uf(xWe)z + (Uf(x>0€)2

Since the multiplicative error has a mean, u, = 1, and the standard deviation of the error is
predefined, the equation reduces to

Hap = Hf(x) 7-5

7-6
Oap = \/ (r0e)” + (0700)” + (or0)°

Previously, we showed how to statistically sum random variables using FRISK. Now we
will show how to perform other operations such as multiplying random variables. This
type of operation is particularly necessary when we need to calculate the uncertainty of
CERs that have multiplicative standard errors. The propagation of errors allows us to do
this in a clean, straightforward manner.

*" The random variables representing a CER and its multiplicative error should be uncorrelated.
48 Engineering Statistics Handbook, National Institute of Standards, Section 2.5.5
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Propagation of Errors Example

For our example, we will estimate the x, o and 70™ percentile of total cost using the three
point estimates (originally from the FRISK example from Book (1994) in Table 4-5) and
estimating errors in Table 7-1. In this example, estimates are random variables defined by
triangular distributions, and CER errors are either normal or lognormal random variables
with ., = 1.

Table 7-1 Propagation of Errors Example

WBS Element, i Estimate, f(x); CER Error, &;
Antenna T(191,380,1151) N(1,0.20)
Electronics T(96,192,582) L(1,0.31)
Platform T(33,76,143) L(1,0.40)
Facilities T(9,18,27) N(1,0.20)
Power Distribution T(77,154,465) N(1,0.35)
Computers T(30,58,86) N(1,0.30)
Environmental Control T(11,22,66) L(1,0.30)
Communications T(58,120,182) N(1,0.30)
Software T(120,230,691) L(1,0.30)

To demonstrate this method, we will perform an example calculation using the first WBS
element. The Antenna WBS element CER is defined by a triangular distribution,
T(191,380,1151). Using the calculations from our FRISK example in Table 4-5,
Krx), = 574, and o5y, = 207.62. The Antenna CER has a standard error, &; defined by
a normal distribution, N(1,0.20), so u,, =1, and g, = 0.2. Using the propagation of
errors equations (7-5 and 7-6),

Bap = Hfeo,te, = (574)(1) =574

Tas = Op (e, = V(79 (0.2)]2 + [(207.62)(D)]? + [(207.62)(0.2)]? =
JI114.8]? + [207.62]% + [41.52]2 = V13179.04 + 43106.06 + 1724.24 = 240.85

This result is shown in Table 7-2. Completing these operations for all nine WBS elements
results in the other figures provided in this table. Note, the mean does not change between
Krx); AN e x)e;, DUt the standard deviation o .y, is greater than oy, due to the effects

of the estimating error, o,,. Now that we have nine WBS elements expressed as random

variables with means and sigmas defined, we can use the FRISK method to statistically
sum them. Remember from Table 4-5, prorq = iz bpx), = 1756. We will assume a

single value for the inter-element correlations, p = 0.2, to calculate the total cost sigma,

2
Orotal = JZZ=1(0f(x)k) +2p Xjsi Xiz1 O (e, Of (n)e; = 476.34.
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Table 7-2 Propagation of Errors Example Solution

WBS Element, i Meex); O (x); oy, K, Ofx)e;
Antenna 574 207.62 0.20 574 240.85
Electronics 290 105.08 0.31 290 142.07
Platform 84 22.63 0.40 84 41.51
Facilities 18 3.67 0.20 18 5.20
Power Distribution 232 83.86 0.35 232 120.37
Computers 58 11.43 0.30 58 21.10
Environmental Control 33 11.88 0.30 33 15.87
Communications 120 25.31 0.30 120 44.66
Software 347 123.68 0.30 347 165.86
TOTAL (not necessarily the sum) 1756 364.93 1756 476.34
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8 Functional Correlation between WBS Elements

In Section 3.4.2 we stated that correlation can be induced by the functional relationships
among random variables in an estimating model such as a schedule network or a series of
cost estimating relationships. By definition, when an estimating relationship such as
Y = aX,%X, € contains a random variable, its probability distribution (Y, a dependent
random variable) is dependent on the probability distributions of its inputs, X;, (the
independent random variables) and the estimating error, €. If the dependent variable (Y) is
a positive function®® of the independent variables (i.e.,Y = aX,’X,), then the
independent and dependent variables will be positively correlated (i.e., 0 < pyx, < 1).
Likewise, if Y is a negative function of an independent variable, they will be negatively
correlated (i.e., =1 < py x, < 0). This type of correlation is called “functional correlation”
(Coleman & Gupta, 1994). There are many types of functional correlations, and if we are
to use MOM techniques to estimate the probabilistic costs of multiple WBS elements
(Table 8-1), it requires we have knowledge of these correlations. In this example, which
pertains to the first three CERs in Table 8-1, we are interested in the correlation between Y
and its independent variables, py .

Table 8-1 Functional Correlation Example Cost Model

i WBS Element, i CER, i Drivers X; &;
1 Systems Engineering, Y, = 0.498X%,%%¢, PMP L( ou, L(1,0.49)
Program Management "\ JoTpo
Integration and Test P
Prime Mission Product 0y, Sum of Hardware and 0
(PMP) Software costs
2 Antenna Y, = 34.36X,,°5X,,%%¢, Aperture Diameter (m), T(2,3,4) L(1,0.30)
Frequency (GHz) T(16,17,18)
3 Electronics Y; = 30,06X30'8g3 Frequency (GHz) T(16,17,18) L(1,0.40)
4 Platform Y, = 26.91X,,°%X,,%%5¢, Aperture Diameter (m), T(2,3,4) L(1,0.38)
Number of Axes Constant =2
5 | Facilities Y = 1.64X %, Area (m?) T(18,20,22) L(1,0.25)
6 Power Distribution Yo = 0.32X:"%¢, Electrical Power (W) T(1200,1425,1875) L(1,0.18)
7 | computers Y, = 0.58X,%%¢, MFLOPS T(180,200,220) L(1,0.31)
8 Environmental Control Yo = 1.94X5% e, Heat Load (W) T(1100,1200,1300) L(1,0.21)
9 Communications Yo = 5.62X4%%¢, Data Rate (MBPS) T(25,30,35) L(1,0.28)
10 | Software Y10 = 1.38X10 % €10 eKSLOC T(80,90,130) L(1,0.32)

Also, if two CERs are dependent on the same random variable, X, (such as CERs 2 and 3),
then those CERs will be functionally correlated to each other. Also, the common driver

“ A positive function is one where Y increases with X.

© 2012 Covarus, LLC. All rights reserved.
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will be correlated to those CERs. We will need to know these correlations, particularly
since these variables are to be statistically summed.

Another case that is easy to envision is where one CER is a function using the sum of
multiple WBS elements as its cost driver (i.e., CER 1 in Table 8-1).° We often refer to
these types of CERs as “cost-on-cost” functions since the cost of one WBS element is a
function of the cost of other WBS elements (for example, a CER that estimates program
management costs and is dependent on the sum of hardware and software prime mission
product (PMP) costs). In this case, we will be interested in the correlation between the
cost-on-cost CER and each of the individual PMP costs.

These correlations are further complicated when correlated uncertainty terms are used in a
set of CERs (e.g.,Y; = f2,(X)e, andY; = f3(X)e3). This is a very complex type of
functional correlation since there are two dependencies involved.

Each of these cases involves a calculation of the correlation between different types of
relationships between random variables. We require a more formalized approach to
identifying types of functional correlations that exist in the WBS structure, or for that
matter a schedule network, and how directly the random variables are related to each other.
No less important is the “order”, or how closely related two functionally correlated random
variables are to each other. In a first order relationship, Y is clearly identified as a
function of X, such as in a CER. In a second order relationship, Y may be a function of
g(X) (i.e., the sum of multiple random variables), one of which may be X. The third type
of relationship is one in which two variables are correlated through functional relationships
of other variables that are correlated. Table 8-2 provides a framework for identifying the
type and order of functional correlations based on the mathematical solution to
calculating p.

Table 8-2 Formalized Types and Orders of Functional Correlations

Order 1 Order 2
Type | pxy WhereY = f(X) pxy Where Y = f(g(X))
Type Il Pr.y, Where Yy =fi(X)and | py v, whereY; = f;(g, (X)) and
Y, = £(X) Y, = £2(9:(X))
Type Il Py, v, WhereY; = f; (X1)€1, Pv,yv, Where Y, = f1(g,(X1)€1),
Y, = f2,(X,) &2, Yy = f2(92(X2)€2),
and pg, ¢, # 00r py, x, # 0 and pg, ¢, # 0, 0r px, x, # 0

With the aid of this formalized framework for segregating the types of functional
correlations existing in an estimate, we can employ an organized method to find the

%0 CER 1 in the example model shown in Table 8-1.
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equations for the functional correlation for each type and order described above. The
method of calculating first order correlation coefficients contains the following steps:

1) Equate the correlation between two random variables in terms of Equation 4-26.
2) Determine the components of Equation 4-26.

a. Find the means of the two RVs

b. Find the variances of the two RVs

c. Find the product of the two RVs

d. Find the expectation of 2¢
3) Rewrite Equation 4-26 in terms of the components found in Steps 2a through 2d.

Second order correlation coefficients require an intermediate step whereby g(X) must be
calculated, followed by the calculations of py ,x) and py 4(x) for Type | correlations,
Py,gx) and py, g4xy for Type Il correlations, and py, 5x)e, and py, g(xye, for Type 1l
correlations.

Type I-1 Functional Correlation

In cost analysis applications, we are often faced with the problem of computing the Type I-
1 functional correlation between a CER and one of its drivers. We discussed this case
when introducing functional correlation, so we will provide a method of calculating py_ v,

where Y = aX,’X, ¢ .

Following the process described above, Step 1: py y = ElX, Y]_ELX, JElY]

o JVar(X,)/Var(Y)

Step 2a: E[X;] = uy,, which is known since X; is a user-defined distribution

E[Y] = E[f (Xy,X2)] = us, which can be found through expectation methods or through
the use of Mellin transforms

Step 2b: Var(X;) is known since X is a user-defined distribution

Var(Y) = (,ufag)z + (af)z + (afag)z ; where
o, i1s known by definition
ur was found in Step 2a
o can be found through expectation methods or through the use of Mellin transforms

Step 2¢: X, Y = (X)) (aX,%X,%€) = aX,"*'X, ¢
Step 2d: E[X,Y] = E[aX,"*'X, ]

Since a is a constant and the terms X, ”**, X, and ¢ are independent, then
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E[X,Y] = aE[X,"*|E[X,°]E[]
If we can assume E[e] = u, = 1, then E[X,Y] = aE [X1b+1] E[X5°].

The k™ moment of a RV of a known distribution type (i.e., E[X*] where X is a uniform,
triangular, normal or lognormal distribution) can be calculated using Mellin transforms or
through expectation operations found in Appendix B — Expectation Operations.

Step 3: Combining the terms from steps 1 through 2d we have

aE[X,°1(E[X, 1] -E[X1P]E[X1]) 8-1

Px,y =
! le\/(ufag)2+(af)2+(afa£)2

Equation 8-1 shows that as the magnitude of g, increases, the magnitude of py_ , decreases.

8.1.1 Type I-1 Functional Correlation Example
For this example, we will use CER 6 from Table 8-1 to calculate the Type I-1 functional
correlation between Yy and its driver, X,. The CER Y is defined as

Yy = 0.32X,%%,

_ E[XeYs]—E[X6]E[Ye]

o Jvar(Xe)/Var(Ys)
Step 2a: E[X¢] = ux,, which is found using Equation 4-1.

Following the process described above, Step 1: py, v,

Since X, is defined by the triangular PDF, T(1200,1425,1875),

_1200+1425+1875

E[X6] == I’l'XG == 3 - 1500

E[Y,] can be found through expectation methods or through the use of Mellin transforms.
In this example, we will use expectation methods to compute E[Y].

E[Ys] = E[0.32X,°%¢5] = 0.32E[X,*°|E[e6] , and since E[e¢] = 1, E[Yy] = 0.32E[X%°].

Since X is a triangular PDF, we must find the expectation of a triangular PDF raised to a
power, which is

E[X ] _ 2 {Mk+2—Lk+2 _ Mk+1_Lk+1} 2 { Hk+1_Mk+1 _ Hk+2—Mk+2}
(H-L)(M-L) k+2 k+1 (H-L)(H-M) k+1 k+2

Substituting the parameters L, M, H and k using our example, E[X°°] = 721.626

So E[Ys] = (0.32)(721.626) = 230.920.
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Step 2b: Var(X,) is calculated using the square of one half of the population standard
deviation of the distributions parameters. This equates to

STDEVP(1200,1425,1875)
2

2
Var(Xy) = ( ) = 19687.5, 50 oy, = V19687.5 = 140.31

The variance of Y is calculated using the propagation of errors method, since the CER, fy,,
and its error are independent RVs.

2 2 2
Var(Y) = (uﬁ,eage) + (nye) + (afYGJgG) ; Where
o, = 0.18 (Table 8-1), and ey, = 230.920 (found in Step 2a)

Tfy, Can be found through expectation methods or through the use of Mellin transforms. In

this case, we will use the equation for the transformation of a triangular PDF from Section
4.3.3 to compute this value.

Ofy, =

2 1 M2C+2_2c+2 LM2c+1_L2c+1 1 H2C+1_pp2c+1 H2C+2_pp2c+2 Lf 2
[ { 2c+2 2c+1 } { 2c+1 2c+2 }] ( )

(H-L) L(M-1) - (H-M) - b

By substituting the coefficient b = 0.32 and the triangular distribution parameters, L, M
and H into this equation, we get Oy, = 19.428.

So oy, = \/ (,ufy6crg6)2 + (O'fYG)Z + (Ufy6(fs6)z

ay, =/ [(230.920)(0.18)]2 + [19.428]2 + [(19.428)(0.18)]? = 46.015

In Step 2c we calculate the product XY, through expansion.

XoYs = (X6)(0.32X%%¢4) = 0.32X" ¢,

In Step 2d we calculate the expectation of this product.

E[XcYs] = E[0.32X5"%g] = 0.32E[X"°|Ee6]

Since E[e] = e, = 1, then E[XY 6] = 0.32E[X"*.

Using the equation for the k™ moment of a triangular distribution, we can compute E[X4Y;]

E[X.Y,] = (0.32)(1090957.67) = 349106.45

Furthermore, the product E[X,]E[Y;] = (1500)(230.920) = 346380.516.
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Step 3: Combining the terms from Steps 1 through 2d, we have:

_ E[XeYsl-E[X6]E[Ys] _ 349106.45-346380.516

Pxeys = Ox¢Ove T (140.31)(19.428) = 0.4222

Type I-2 Functional Correlation

In this case, we wish to find the functional correlation px y between two random variables
X;and Y whereY = f(g(X;))ey. We will assume f (W) is a CER, specifically a cost-on-
cost function of the summation, W = g(X;&;) = X'~ X;, of WBS elements where X; is
one of the summands. In this type of functional correlation, we assume W and &, are
independent random variables.

Y=(a+bW)ey,and W = g(X) = YL X;
Following Step 1 of the process described above, we can express the correlation as:

_ E[X;Y]-E[X;]E[Y] _ E[X;f(g(X;))]-E[X;]E[f(g(X))]

Pxy C Var@pvary)  JVar(X)yvar(f(g(Xy))

Rewriting these terms, pyy = Elx(arolzic X )EY]_E[Xi]E[(atb[Zi”Xi] Jev]
axi\/Var[(a+b[Z’i1=1Xi] )s]

In Step 2a, we must find the means of X; and Y.

E[X;] = My, which is known since X; is a WBS element summand and can be calculated
using either expectation methods or through Mellin transforms.

E[Y] = E[(a + b[Xi-; Xi])ey] = Elae + b[Xi; Xi]°¢y]
This expression can be rewritten as:

E[Y] = aE[e] + BE[(Xi2; X;)Cey]E[ey] = a + PE[(Q[2; X;)€] , since E[ey] = 1

1
E[(X7, X;)¢] can be found for a lognormal PDF since E[XX] = o (kP301%)
In Step 2b, we find the variances of X; and Y.

Var(X;) is assumed to be known, and Var(Y) is calculated using the propagation of errors
method.

In Step 2c, we find the product X;Y through expansion.
X;Y = X;(a+ bW ey = aX;ey + bX;WCey = aX;ey + bey X; Q11 X))

We must move X;into the summation, )i, X; &;, which results in:
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1
C

1 c 1 c
XY = aX;ey + bey (Z?:l XiEXi) = aX;ey + bfy( =1 Xi[ * ])
Now we have separable terms from which to compute the expectation.

11\ €
In Step 2d, the expectation is E[X;Y] = aX;&y + bey( ?zlxi[“z]) . In the next step, we

face a conundrum. We already assume that €, and W are independent RVs as a condition
of the regression of the CER, f(W). We may also assume X; contains some multiplicative
error, €;, so that that error must be independent of f(IW)and &,. In practice, however, this
case is not always true, since sample correlations do exist between &; and &,. We must
assume that independence overrides this situation and that X;, &, and ¢; are all independent
RVs. Given this, the expectation can be reduced to:

E[X;Y] = aE[X;]E[ey] + DE[ey|E [( ?zlxi[“ﬂ)c] , and since Efey] = 1,

C
E[X;Y] = auy, + bE [( ?=1Xi[1+%]) ] which is solvable knowing ( ?=1Xi[1+%]) is
lognormally distributed and that E[x] = e(¥/+3¢°%"),

Since E[X;] = My, and E[Y] = a + bE[(Q)}L; X;)€], the product of the expectations of X;
and Y is E[X;]E[Y] = uy (a + E[(Xi=; XD = apy, + buy E[(Xi=; Xi)]

The term E[X;Y] — E[X;]E[Y] is reduced to
B Y] — EDXIBLY] = aiey, + 0B [ (£ X9 | = g, — by B, X0°)

B~ B JEY] = b {E [(2i x04) | - Bl x01)

In step 3, we find the functional correlation py, by combining terms into the expression
found in Step 1.

ofel (o) Tl
Pxy = Jvar(Xpvar(y)

8.2.1 Type I-2 Functional Correlation Example
In this example, we show how to find the functional correlation between CERs 1 and
2, py, v, in our example model. CER 1 is a cost-on-cost function of the summation of
WBS elements 2 through 10 (i.e., W = Y12, Y;) , where the cost of WBS element 2 (i.e.,
Y,) is one of the summands. The CERs are:
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Y; = (0.498(X}12, ¥))%%)ey, and ¥, = (34.36X,,%°X,,°%)e;, where
g, and e,are multiplicative errors of the CERs defined by L(1,0.45) and L(1,0.3),
respectively.

In this type of functional correlation, we assume W (the sum of Y;) and &; are independent
lognormal RVs. Following Step 1 of the process described above, we can express the
correlation between CERs 1 and 2 as:

_ E[11Y;]-E[N]E[Y;]

Pry. = e var )

Substituting the functional forms of CERs 1 and 2 into these terms results in:

E[r2{b(21% W) Jey, |-EIE[{b(212, W) ey, |
Py y, =

0'y1 O'Yz

8.2.1.1 Means of Correlated Random Variables
In Step 2a, we find E[Y;] and E[Y,], which are the means of WBS elements 1 and 2.

E[Y,] = uy,, which is calculated using expectation methods, is
E[Y,] = E[(34.36X5,°°X2,%%)e;] = 34.36E[X,,°° | E[X2,°8]

From the previous example, we calculated E[Y,] using the product of k" expectation of
the triangularly distributed independent variables X, and X,,. The result is repeated here.

E[Y,] = (34.36)(1.728)(9.646) = 572.706

Using this method for the remaining CERs in WBS elements 3 to 10 by substituting their
respective PDFs and CER coefficients, we can calculate their means. We sum the means
of CERs 2 through 10 to get the mean of their sum, since E[}. Y;] = X, E[Y;]. These results
are shown in Table 8-3.

Table 8-3 Means of CERs of WBS Elements 2 through 10

CER; b; |79 Ky My,
2 34.360 1.728 9.646 572.706
3 30.060 9.646 - 289.953
4 26.910 1.728 1.803 83.816
5 1.640 | 10.984 - 18.014
6 0.320 | 721.626 - 230.920
7 0.580 | 100.428 - 58.248
8 1.940 | 17.046 - 33.068
9 5.620 | 21.346 - 119.965
10 1.380 | 251.536 - 347.120

SUM - - 1753.813
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The mean of CER 1 is defined as E[Y;] = E[(b(Z{2, Y1) ey, | = E[(W)ey, |, where W is

the RV of the sum of WBS elements 2 through 10.
This expression can be rewritten as E[Y;] = bE[W€]E[ey, | = BE[W€] , since E[ey, | = 1.

We can also assume that the sum, W, represents a lognormal distribution with the
parameters Py, and Q,, that define W’s underlying normal distribution. P, and Q,, are
dependent on both the mean and variance of W (i.e., u, and ay,2).

The term E[W¢] can be found for a lognormal PDF since E[W €] = e(CPWJ’%QWZCZ), but Py,
and Q,, are functions of u,, and o,,. We must complete Step 2b in order to compute the
values of the following: oy, for each Y;; uy, and oy,; Py, and Qy,; E[W€] and oy c; and,
finally E[Y; ] and oy, .

8.2.1.2 Standard Deviations of Correlated Random Variables
Each oy, for CERs 2 through 10 is calculated using the propagation of errors method. They

are reported as oy, in Table 8-4.

Table 8-4 Means and Standard Deviations of CERs of WBS Elements 2 through 10

CERi b; Mxia Mxip Wy O¢ Oxia Oxip Of(xi) Oy;
2 | 34.360 1.728 | 9.646 572.706 0.3 0.1186 0.1853 40.8333 177.0219
3 | 30.060 9.646 - 289.953 0.4 0.1853 - 5.5711 116.1364
4| 26.910 1.728 | 1.803 83.816 0.38 0.1186 0.0001 5.7539 32.4396
5 1.640 10.984 - 18.014 0.25 0.3589 - 0.5885 4.5442
6 0.320 | 721.626 - 230.920 0.18 | 60.7123 - 19.4279 46.0150
7 0.580 100.428 - 58.248 0.31 3.5677 - 2.0692 18.1865
8 1.940 17.046 - 33.068 0.21 0.2321 - 0.4503 6.9596
9 5.620 21.346 - 119.965 0.28 1.3077 - 7.3494 34.4464
10 1.380 | 251.536 - 347.120 0.32 | 32.7041 - 45.1317 120.7638
w - - - | 1753.813 - - - - 331.911

We find 4, in Table 8-3. The standard deviation of W is found through linear algebra using

the relationship oy, = \/ayTpyay. In this relationship, gy is the vector of oy for2 <i <
10, a7 is the transpose of that vector, and py is the functional correlation between CERs
of WBS elements 2 through 10. The matrix py is a 9x9 element sub-matrix of the entire
10x10 functional correlation matrix. In this case, we need the lower 9 rows and columns
to calculate the first row and first column of the full 20x10 matrix.

In our example, all elements of py are Type Il1-1 or Type II-1 functional correlations, for

which we provide examples in other parts of this section.
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-1 0.1969 0.2309 0.1924 0.1753 0.1927 0.1937 0.1893 0.17857
0.1969 1 0.1961 0.1979 0.1804 0.1983 0.1993 0.1948 0.1837
0.2309 0.1961 1 0.1946 0.1774 0.1950 0.1959 0.1915 0.1806
0.1924 0.1979 0.1946 1 0.1790 0.1968 0.1978 0.1933 0.1823
Py =101753 0.1804 0.1774 0.1790 1 0.1794 0.1803 0.1762 0.1662
0.1927 0.1983 0.1950 0.1968 0.1794 1 0.1981 0.1936 0.1827
0.1937 0.1993 0.1959 0.1978 0.1803 0.1981 1 0.1946 0.1836
0.1893 0.1948 0.1915 0.1933 0.1762 0.1936 0.1946 1 0.1794
-0.1785 0.1837 0.1806 0.1823 0.1662 0.1827 0.1836 0.1794 1

Knowing the values of the 1x9 vector ay and the 9x9 matrix py , the standard deviation of
W is calculated through the linear algebraic relationship oy, = \/oy! pyoy = 331.911.

Using uy, = 1753.813 and gy, = 331.911, we can calculate P, and Qy,, where:

_1 pwt ) _ _ w2\ _
Py =2In (uW2+aW2) =7.452,and @y = [In(1+ #WZ) = 0.188.
Now that the parameters of the underlying normal distribution of W are known, we can
calculate values of E[W €] and subsequently E[Y;] and gy, .

1 2
First, E[W¢] = e(cpJ%chz) _ e((0.9)(7.452)+E((0.9)(0.188)) )

bE[W €], then

= 829.654, and since E[Y;] =

E[Yy] = py, = py,,, = (0.498)(829.654) = 413.168.

We can express ¥; as Y, = (b(X;2, Y))ey, = (bW ey, = fy, ey,. Since we need to find
ay,, and it is formed by the product of f, and its multiplicative error, we must first find
Oty then account for the multiplicative error. Since W is exponentiated by the
coefficient, ¢, we must calculate the standard deviation of f,,, using W’s underlying
normal distribution (defined by Py, and Q,), then find the log transformation of the scaled

normal distribution. From this process, we obtain:

Ofw

— bJe(ZCPW"'%[CQW]Z)(e[CQW]Z _ 1) — (0_498)Je(2(0.9)(7.452)+(0.5)[(0.9)(0.188)]2)(e[(0.9)(0.188)]2 _ 1), SO
1

Or,,, = 69.756.

w

Using the propagation of errors method, we can compute gy, knowing Hfw . Of and o, .

oy, = \/(/walagl)z + (afwl)z + (afwlagl)z = 201.046.
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8.2.1.3 Expectation of Product of Correlated Random Variables
Our work is not complete since we still need to calculate the numerator of the correlation
equation in Step 1.

In Step 2c, we find the product Y, Y, to be Y;Y, = Y,(b(Z12, ¥;))e,.
1\ C
Moving the RV Y, into the summation results in Y;Y, = b (2}22 YiYZE) &.

1\ C
In Step 2d, the expectation of the product Y;Y, is E[V;Y,] = E [b ( 10, YL-YZE) 81], which

Cc
reduces to E[Y,Y,] = bE[e&,|E [(2}22 Yin%) ]

1\ C
Since E[g;] = 1, we can further reduce this to E[Y;Y,] = bE [( 10, YiYZE) ] = bE[V®].

This is solvable knowing the following: the means and variances of the products, V; =
1
Y;Y,¢, are calculable; the products can be summed to form the random variable, V, where

. - - C (CPU+1Q2C2)
V =) V;; and the term V is lognormally distributed, so E[V¢] = e 2U" ),

1
We start with calculating the moments of the product Y;Y,c. As an example, we will set

1
i =3 and find the mean and variance of V5 = Y;Y,c. Using the method described in
Section 5.3, we define the lognormal RVs, Y, and Y3, using the normally distributed RVs,
Z, and Z5.

V, = y3y2% = e(@3+23/0)

1 1 1
Py =Pz, + ;PZZ and Qf = Qi + 2pz, 2, ZQZZng + C_Zng’ where

o )|

Using Equations 4-5 and 4-6 with values for uy , oy,, ty,, and oy, from Table 8-4, we
obtain:

=— In
pZZ,Zg QZZ QZg

4 4
1 Uy 572.706
P, =-In|——=2—|=-In ( ( )
2 2 By, 2+oy,? 2 (572.706)%2+(177.022)2

_ oy,%\ _ (177.022)%\ _
Q,, = \/ln (1 + uy22> = Jln (1+32220) = 0302,

_1 tys* _1 (289.953)% _
b, = 2 In (Hy32+0'y32> T2 In ((289.953)2+(116.136)2) = 5.595,
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(289.953)2
pair of normal RVs is calculated as:

)|

Pz,z; = mln [1 + (0.1961)(\/6(0'302)2 — 14/e(0:386)2 _ 1)] = 0.2067

2
Qs = \/ln (1 + ZY32> = \/ln (1 +M) = 0.386, and the correlation between this
Y3

=—!
Pz3.25 Qz,Qz5

1
So the new distribution formed by the product Y;Y,c has an underlying normal
distribution, U5, where:

1 1

0.302)2 _
09 J

Qb = 03, + 2p2,2,~ 02,0z, + 5 03, = (0.386)% + 2(0.2067)  (0.386)(0.302) + (
0.315

Then, the mean and variance of V5 are found by transforming U; back to a lognormal
distribution, V5.

1 1
y, = elPus*308) = o(12601%5019) _ 347348 652 and

3

oy, = \/e(zpu3+%Q53) (eQ53 _ 1) _ \/e(2(12.601)+(0.5)(0.315))(60.315 — 1) = 1.953E + 05.

We need to repeat this procedure for all V;, so after computing the remaining V; terms, we
obtain the results in Table 8-5.

Since V is to be exponentiated, we will need to find both its mean () and standard
deviation ( gy,) in order to perform the exponentiation. The mean of V, uy, is the sum of
the elements iy, which is 2145735.39.

Table 8-5 Calculation of V; Distribution Parameters

i My, Oy, Pz, Qz Pz, Py, Qu, My, Oy,
2 572.706 | 177.022 | 6.305 | 0.302 | 1.0000 | 13.310 | 0.638 739228.715 | 4.730E+05
3 289.953 | 116.136 | 5.595 | 0.386 | 0.2067 | 12.601 | 0.561 347348.652 | 1.953E+05
4 83.816 32.440 | 4.359 | 0.374 | 0.2414 | 11.364 | 0.559 100760.716 | 5.647E+04
5 18.014 4,544 | 2.860 | 0.248 | 0.1984 9.866 | 0.455 21360.402 | 9.737E+03
6 230.920 46.015 | 5.423 | 0.197 | 0.1802 | 12.428 | 0.419 272559.191 | 1.142E+05
7 58.248 18.186 | 4.018 | 0.305 | 0.2000 | 11.023 | 0.497 69341.165 | 3.448E+04
8 33.068 6.960 | 3.477 | 0.208 | 0.1991 | 10.482 | 0.429 39108.488 | 1.678E+04
9 119.965 34.446 | 4.748 | 0.281 | 0.1959 | 11.753 | 0.478 142530.987 | 6.827E+04
10 347.120 | 120.764 | 5.793 | 0.338 | 0.1863 | 12.798 | 0.519 413497.078 | 2.149E+05
> 1753.813 | 331.911 - - - - - 2145735.39 -
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The standard deviation of V, gy, is calculated through the linear algebraic relationship,

oy =+ ayTpyoy. To find this quantity, we need to know the values of the 9x9 correlation
matrix py, whose elements are py,y; = py,y,1/cy y,1/c. This correlation matrix is formed

by computing the individual 9x9 elements as follows:

1 1 2
E[(YiYZE>(YjYZE>]—E[Vi]E[Vj] E[YinYZE]—yV[ij

O'ViO'V]. O'ViO'V].

pinZ 1/C,YjY2 1/c =

Fortunately, we have already calculated the values of w;, and oy, (thus Hy; and oy ,as well)

2
in Table 8-5, but we need to know E [YinYZE] in order to find py,. 1/c v, 1/c and complete
the calculation of o, = \/ayTpyoy.

2
The term E [YinYZE] is calculated through the triple product of lognormal RVs with one

RV (Y,) raised to a power — a task that is non-trivial but essential. Fortunately, we can
solve this problem using our knowledge of the expectations of products of lognormal RVs.
The triple product is formed by summing the parameters P and Q of the underlying normal

2
distributions of V;, Y}, and Y,¢, then transforming this sum back to a lognormal distribution

2
representing Y;Y;Y,e.

2
We represent the variable of the triple product of Y;,Y;, andY,c as a lognormal
distribution, T, ; ;, with the underlying normal distribution S,; ; such thatT,;; = e®2iJ.
S2,.,j Is defined by mean Pg, , - and variance Qsz,i,jz which are:

2
PSZ,i,j = PZi +PZ] +;PZ2, and

2 _
Qsz_i’j -

2 2 2 2
inz + szz + (Z QZZ) +2 {Pzi,szzinj + pz,,2,0z; (; QZZ) +pz,2,Qz; (; sz)}, where
2
1+ Py.y; (\/GQgi — 1\’6021' — 1)]

, . 2 .
For one of the elements where i = 3 and j = 4, Ps, ,, = Pz, + Pz, + ;PZZ, which becomes

1
In
QZiQZj

pZi,Zj =

Ps,., = 5.595 + 4.359 + — 6.305 = 23.965.
)3, 0.9

The correlation coefficient of the normal distributions Zz;and Z,is a transformation of
Py, v,» Which has already been calculated.
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/ QZ, _ Q2 _ ) - 1t
1+py3,y4( e 1\}‘3 Ze—1 _(0.386)(0.374)1n[1+

0.1961) (/e ©386)* _ 1,/¢(0378)2 _ 1)] —0.2078

=— In
ng,Z4 QZg QZ4,

We obtain pg, ;. and pz, 7, similarly.

1+py,y, (“ e% —1[e%: - 1)]

(0.1969)(\/ (03022 _ 1./p(0386)2 _ 1)] = 0.2067

0 Q% Qz, _
1+PY2Y4 e*sz —1,[e<2 1] (0302)(0374)l [1+

(0.2309)(\/ (03022 _ 1,[p(0374)2 _ 1)] = 0.2414

ln

Pz,z; = (0. 302)(0 386)l [1 +

ln

Pz,z, =

Using the values of Qz,, Qz,, Qz,, Pz, z,, Pz,z, and pz, , We can get the parameters of

52,3,4'

Q52,3,42
QZ32 + QZ42 + (% QZZ)Z + 2 {Pzg,Z4ng Qz, + Pz,,2,0z, (% QZZ) + pz,2,Qz, (% QZZ)}

0s,,.” = (0.386)? + (0.374)* + (2222)" 4 5((0.2078)(0.386)(0.374) +
(0.2067)(0.386) (X222 + (0.2414)(0.374) (2522)} = 1.027

2(0.302)

2
The mean of T, ; (also known as E [YinYZE]), is Hry,; = e(PSZU 2Q52u )

So in the case where i =3 and j =4, ur,,, = e(Ps2347305,54°) = e(23.965+(0.5)(1.027)),
which is E[T,3 4] = ur,,, = 42744227758.

2
E[Y3Y4Y25]—MV3MV4

Now we can calculate py, , 1/c , Which is

1/c =
’Y4Y2 Y30y,

42744227758—(347348.652)(100760.716)
1 1/c = = 05989
stY'z ASARL (1.953E+05) (5.647E+04)

This process must be repeated for all i, j to compute p, as:
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-1 0.7036 0.7264 0.8180 0.8609 0.7682 0.8543 0.7877 0.73511
0.7036 1 0.5989 0.6578 0.6761 0.6292 0.6779 0.6394 0.6039
0.7264 0.5989 1 0.6704 0.6909 0.6401 0.6919 0.6510 0.6141
0.8180 0.6578 0.6704 1 0.7702 0.7067 0.7695 0.7203 0.6776
Py =10.8609 0.6761 0.6909 0.7702 1 0.7297 0.7992 0.7450 0.6993
0.7682 0.6292 0.6401 0.7067 0.7297 1 0.7302 0.6858 0.6462
0.8543 0.6779 0.6919 0.7695 0.7992 0.7302 1 0.7450 0.6999
0.7877 0.6394 0.6510 0.7203 0.7450 0.6858 0.7450 1 0.6577
-0.7351 0.6039 0.6141 0.6776 0.6993 0.6462 0.6999 0.6577 1

Performing the calculation, oy, = \/ayTpyoy = 1137353.64.

Since we know u, and oy, we can calculate the parameters of the underlying normal
distribution P, and Q, so we can calculate E[Y; Y5 ].

1 C 1
bE[Y Y] = bE [(£1%, rye) | = bE[Ve] = be(cPrien’e’) =

((0.9)(14.46)+%((0.9)(0.498))2)

(0.498)e = 245930

8.2.1.4 Computing the Type 1-2 Functional Correlation

8.3

In step 3, we find the functional correlation py, y, by combining terms into the expression
found in Step 1.

__ E[1Y2]-E[V;]E[Y;] _ 245930-(413.17)(572.71)

Prye = Faramfvarn) (201.05)(177.02) 0.2614

Type II-1 Functional Correlation
In this case, we have two CERs Y; and Y, expressed as functions of the same random
variable, X.

Yi = fiX)& = (a; + b;X)g; ; where 8-2
a;, b;, and c; are coefficients of the CERs with (Var(-) = 0),

g; are multiplicative errors of the CERs with u, =1, and a

given value of o,

Pr.e; = 0, since CERs and their errors are assumed to be
independent.

We can find the Type 1I-1 functional correlation between these CERs since they share a
common variable, X. The correlation between these two CERSs is py, v, , and based from

Step 1.

Cov(Yy,Yy) 8-3

Pypy, = Jvar(yy)Var(vz)
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Clearly, we will need to find the formulae for Cov(Y;,Y,) and Var(Y;) to find py, v, .
Using Equation 7-6 from the propagation of errors method, the standard deviation of

Yiisoy, = Var(Y;) , where (Y;) = (,ufiagi)z + (/,teiafi)z + (afiaei)z .

If Y; and Y, are CERs with multiplicative errors, then u,, = 1 and we know o, from the
percent standard error of the CER. Var(Y;) reduces to:

Var(Y;) = (ufiasi)z + (afi)z + (Gfiasi)z 8-4

The terms uy. oy, are computed from Equations 4-28 and 4-29 as follows:

‘ufi = Q4 + biE[XCi] 8‘5
8-6

o, = /biZVar(XCi) = b;\[Var(X©)

Var(Y) = 0.2 (a;? + 2b;E[X] + b E[Xi]% + 8-7

bi*Var(X)) + b;*Var(X<)

Using the results from Section 4.3.3 and assuming X is a triangular distribution, X =
T(L,M, H), then:

o =

2cit2 2ci+1

2ci+1 2¢i+2

\/ 2 [ 1 {M2ci+2_L2ci+z MZCi+1—L2Ci+1} 1 { 261 _pp2ci+1 H2ci+2_M2ci+2}] (
i —

(H-L) L(M~-L) (H-M)

We need to calculate py,and oy,.
l'l'Yi = E[YL] = E[flgl] = nufi.u&‘i + pfi,Sio-fio-Si
Since g, = 1and py, .. 07,0, = 0, then py, = pg,.

The standard deviation of Y; is calculated using the propagation of errors method:

Oy; = \/Ufiz + Gfizlufiz + Gfizafiz ,and Hy; = Hfile

The Type I1-1 correlation between the CERSs is:

Cov(Yy,Ys) _ Cov(ry,Yy) _ E[Y]-E[V;]E[Yz] _ E[ViYal-py, ny,

Py, y, JVar(¥)var(yy) \/ oy, 2\/‘7"2 2 oy, oy, oy, 0y,

E [Yl YZ]_ Myl ”Yz

2 2 2 2 2 2
i=1(\/o-fi +0'£i Ky +0'fi Og; )

Pvy, =
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Using Step 2c,

V1Y, = [(a; + bix)e][(az + byx)e;] = (6101 + &1b1x) (€20, + €,0,%2)
Multiplication of terms produces:

Y1V, = aja,616; + aybye1,x°2 + aybie16,x1 + €16,b1byx1x2

Calculating the expectation of the terms in Step 2d:

E[V1Y,] = Elaja,6,65] + E[a b,e,6,x2] + E[aybie16,xC1] + Ee,6,b1 by x1x¢2]
Separating constant scaling terms:

E[V,Y,] = aya,E[e,6,] + a;b,E[e,6,x2] + a,b E[e,6,x1] + byb,E[&,6,x¢1x 2]

Expectations with the product [&,&,] appear consistently, so we will define the product as
w, such that

Ele1&;] = Elw] = pg,le, + Pee,06,0:, = 1 + pe,e,0¢,0¢,, Which is a constant defined by
the CER.

So, E[Y}Y,] = a;a,E[w] + a,b,E[wx 2] + a,b E[wx€1] + by b, E[wxc1¢2],
We need to find E[wx¥] = p,, k0,0, + E[w] E[xX].

ASSUE 4, = 0,50 Ewx] = (14 py,00,0,,) E[x¥] and

E[Y,Y,] = aya,E[w] + a,b,E[w] E[x?] + a,b, E[w] E[x“1] + byb,E[w] E[x‘1+¢2]
E[Y,Y,] = E[w](a,a, + a;b, E[x2] + a,b; E[x€1] + byb, E[x¢17¢2])

E[Y,Y,] = (14 pe,e,06,0e, ) (a1a; + arby E[x°2] + ayby E[xt] + by by E[x1*¢2])

And we know E[w] = (1 + p., ¢,0¢,0e,) and

Kk 2 Mk+2_Lk+2 Mk+1_Lk+1 2 Hk+1_Mk+1 Hk+2_Mk+2
E[xX] = L
k+2 k+1

(H—L)(M—L) (H=-L)(H-M) k+1  k+2

We can solve E[x¢], E[x¢2], and E[x“1*¢2] using formulas for E[x¥] and substituting k
for ¢y, cy,c;+c,. Formulas for E[Xk] for different distribution types are located in
Appendix A — Probability Distributions.

So if X is defined by a triangular distribution, then we have the following for Step 3:
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_ (14pey e,0¢,0¢,)(araz+asby E[x2]+azby E[x1]+byby E[x12])— pur ug,

Priy, = 2 2 2y, 2 2, 2
| Of; 2 +0g°Up*+0f, 20,

Of course, not every function will have the form, Y; = fi(x)g = (a; + b;jx¢1)g;, so we will
consider three simplified cases.

Case l: ifc; =1,and c, = 1thenY; = (a; + bix)g;

_ (14pey,e,0e, 06, ) (@raz +uxlasby +azby | +b1by E[x?])— uyr, ug,

Priy, = 2 2 2, 2 2, 2
i=1(\/0-fi +0'gi HE; +O'fi Og; )

Case 2: ifa; = 0,and a, = 0thenY; = b;xCig;

_ ( 1+p81,$20.810-£2)(b1b2 E[xC1+C2])_ l'lfl l'lfz

Pry, = 2 0r.240:.%ur.2+0r.20,.2
i=1\|Of;" "0 "HfiTTOf "0

Special Case 3: if a; =0, and a, = 0; and o,, = 0 and g, = 0; then ¥; = b;x“i, which
is the case from Garvey (2000).>

p i (b1by E[x€1%€2])— Uy Hfy
Y., —
12 0f19f2

8.3.1 Common Predecessor Functional Correlation
In the case of a schedule network with parallel tasks, we are faced with the situation
whereby we must compute the functional correlation between two tasks T1 and T2 that
have the same predecessor, P, that has a finish date Fp. Assume the durations of T1 and
T2 (D1 and D, respectively) are correlated by p,_p,. The start dates of T1 and T2 are F4

and F, respectively. The finish dates of T1 and T2 are F{ = Fp+ Dy and F, = Fp + D,.
The resulting standard deviations of the finish dates are op, = /FPZ +D;* and Op, =

/FPZ + D,

Using Step 1, the correlation between F; and F, is expressed mathematically as:

E[F,F,]-E[F{]E[F,]

JFlan

PFr F, =

Step 2a: if up, = pp, + pp, and pg, = pg, + pp, , then

— ., 2
Mg Bp, = Bp,” T Hp lp, T He lp, T Hp Bp, +Pp, p,0D,0D;:

1 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering
Perspective. New York, NY: Marcel Dekker.
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Step 2b: the standard deviations of F; and F, are

OfF, = ’O'FP2+O'D12 and0F2= ’O'FP2+O'D22.

Step 2c: The first expectation term requires expansion of the product F; F,, which is
FiFy, = (Fp+D)(Fp + D;) = Fp* + FpD, + FpD; + DD,

Step 2d: then the product moment is

E[F,F,) = E[Fp®| + E[Fp]E[D,] + E[Fp)E[D;] + E[D;D,]

Since E[Fp?| = pp,? + 0p,2,

E[FiF,] = pp,? + 05, + Upolip, + Heptip, + Hp,p, + Pp,0,0p,0p,

Step 3: the correlation between the two finish dates is then

PF, F,
Hpo? + 0p,% + Upptip, + Hpotp, + U, Up, + Pp,.p,0D,0p, — Hrp” — Urphp, — Hrplp, — Hp, Mp,

O'F10'F2

Through cancellation of terms, we arrive at Equation 8-8 - a useful relationship in schedule
uncertainty analysis.

OFp’+PD1,0,9D,9D, 8-8

\/O'FP2+O'D12\/O'FP2+O'D22

Pr F, =

8.3.2 Type II-1 Functional Correlation Example
For this example we will calculate the functional correlation between two CERs (Y,
and Y3) that share a common cost driver (X = X,;, = X3), which is defined as the frequency
of operation. The CERs are defined as:

Y, = 34.36X,,°°X,,%%¢, and Y; = 30.06X5%¢;.

They share the random variable, X, where X = T(16,17,18); and the CER uncertainties are
o, =0.3,0,, =04, and p. ., = 0.2. The other driver of CER Y, is X4, which is

defined by a triangular distribution T'(2,3,4).

When statistically summing these CERs in a WBS we need to find the functional
correlation, py, y, .

In the first step of the calculation process, we define the correlation between the CERs as
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E[Y,Y3]-E[Y,]E[Y3]

O'Y2 0'Y3

Py, v, =

In Step 2a, we find the means of Y,and Y;.

E[Y,] = 34.36E[X,,°°|E[X2,°8]Ele,], and [Y5] = 30.06E[X;®]E[e;]
Since E[e;] = 1and E[e5] = 1,

E[Y,] = 34.36E[X,,°°|E[X2,°8], and E[Y;] = 30.06E[X5°?]

Using the relationship for the expectation of a triangular PDF raised to a power, k, and
substituting the parameters of the triangular PDF, we get

E[X5.*°] = 1.728, E[X,,°®] = 9.646, and through similarity E[X;°®] = 9.646
The means of Y, and Y; are, therefore,

E[Y,] = (34.36)(1.728)(9.646) = 572.706, and

E[Ys] = (30.06)(9.646) = 289.953.

In Step 2b, we find the standard deviations of Y, and Y;. Using the relationship for the
variance of a triangular PDF raised to a power, k, and substituting the parameters of the
triangular PDF, we get

Var(X,,"*) = 0.01407, Var(X,,°®) = 0.03435, and Var(X;°®) = 0.03435.

We need to combine the independent variables in CER Y, to find Var(sz).

Var(fXZ) =
(34.36)2[E2[ X5, 8 Var (X24%°) + E2[X50 " Var(X2,*?) + Var (X,,%°)Var(X,,%?)]

This results in Var(sz) = 1667.360. Combining Var(sz) with the variance of the error
term using the propagation of errors method results in:

Var(Y,) = [Var(fy,) + E*(fx,)Var(e,) + Var(fy,)Var(e,)] = 31336.746
Similarly,

Var(Ys) = [Var(fy,) + E*(fx,)Var(es) + Var(fx, )Var(es)| = 13487.670.
oy, =V31336.746 = 177.0219 and oy, = V13487.670 = 116.136

In Step 2c, we find the product Y, Y5, which is
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Y,V = (34.36X54°°X5,%%¢,)(30.06X5%%¢;) = (34.36)(30.06) (X2,°) (X25"¢) (e2€3)
Y,Ys = 1032.862(X,,%°)(X25"¢) (e2€3)
E[X,,"®] = 93.076
Following Step 2d, the expectation of this product is
E[Y,Ys] = 1032.862E[X,,"°|E[ X2, ®|E[e€5], and E[e,5] = 1 + pe, ¢, 0,0,
Using inputs and previously calculated values, this becomes
E[Y,Ys] = (1032.862)(1.728)(93.076)(1 + (0.2)(0.3)(0.4)) = 170106.250
The product E[Y,]E[Y5] is
E[Y,]E[Ys] = (572.706)(289.953) = 166058.082

Combining these values into py, y, results in

__ E[Y2Y3] —E[V,]E[Y3] _ 170106.250 —166058.082 _ 4048.168

= = = = 0.1969
Pr.y, Oy, 0y, (177.022)(116.136) 19959.751

8.3.3 Type II-1 Functional Correlation between Multivariate Functions
What is the correlation between two CERs that have two RVs and share one RV in
common?

Y, = filvvw)g = (a; + bix“w)e ,and Y, = f,(u,w)g = (ap + byxC2u2)e, ;
where

ai, by, and ¢, are coefficients of the CERs with (Var(-) = 0),
g; are multiplicative errors of the CERs with u,, = 1, and
Pr.e; = 0, since CERs and their errors are assumed to be independent.

_ E[Y1Y2]— I'l'yl MYZ

I:YY
1,12 Ovy. O
Y192

V1Y, = [(a; + bixrw™) g ][(ay + bax2u2)e,] = (g1a; + &by x wh)(e,a, +
g,b,xC21%2)

V.Y, = 16,10, + £18,a1b,x2U%2 + £18,a, b1 X WN + £,6,b, by x 1w xC2y e

E[V,Y,] = aja,E[g,6,] + E[g,€1]a;b,E[x2u®2] + E[e,6;|ayb E[x1w] +
E[e1&,]1b1 b, E[x 1w xC2y 2]
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E[€1£2] = E[(A)] = MS]_”EZ + p€1€20-810-€2 = 1 + pelszo-elo—sz 1 and

E[VY,] =
E[wl{aia, + a,b,E[x2]E[u®z] + a,b,E[x“|E[w%] + by b,E[x1*¢2|E[w*]E[u%2]}

Oy; = \/afiz T Ugiz'ufiz + Gfizafiz , and Hy; = Hy;

s, = aq + by E[x“w?], and g, = a, + b,E[x2u?]

o, = byy/Var(xrwdt), and o, = by\/Var(x‘2udz)

Var(weix®) = E[x21w2d1] — (E[x“1wh])? = E[x24]E[w?d] — (E[x]E[w?])?

o1, = bl\/E[xzcl]E[WZdl] - (E[xcl]E[Wdl])Z

Var(u®2w%) = E[x?2u?%] — (E[x‘2u%])? = E[x?%]E[u?%] — (E[x‘2]E[u%])?

o7, = by ELZ]E[u?®] — (E[x“:]E[u])?

Pyyy, =
(1+pey 6,06, 0c, ){a1a2+a1b2E[x 2] E[u42]+a, b1 E[xC1]E[w1]+ by by E[xC1* 2] E[w |E[ud2]}- pp, uy,

lezl(\jafi2+agi2yfi2+afiza£iz)

If u and w are constants; and if u = 1 and w = 1, then

_ (14pey e,0e,0e,){araz+a1 by E[xC2] (1) +az b1 E[xC1](1)+b1 b E[x 1+ 2] (1) (1)} - wy, by,

Py.y, =
H?=1(\/”f12+U€izl‘fi2+‘ffizasi2)

_ (14pey e,0e, 0, ){araz+ar boE[xC2]+a by E[x 1] +b1 b E[xC14 2]}~ pr pip,
Proy, 2 240, 20240720, 2
i=1\|9fi" T0g Hfi"TOf;"0¢

same result as for the single variable CER cases.

, which is the

Type II-2 Functional Correlation

This type of functional correlation occurs when two nested functions share one or more
RVs in common. This occurs in a resource-loaded schedule where costs are derived from
particular task durations.

Consider a simple case of the cost of a project with three WBS elements where the total
cost is the value Xr,;.

Xror = X1 + X, + X, where X; is the cost of WBS element i.
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Now consider the schedule duration of the project, D, where its total duration is
Dyt = Dy + D3 + D,, where D; is the cost of task i.

We also know that the costs of WBS elements 1, 2, and 4 are their respective durations
multiplied by a rate, r;, where X; = D;r;.

Following Step 1 of the functional correlation calculation process, the correlation between
total cost and total schedule duration can be expressed as:

E[XTotDTot] - E[XTot]E[DTot]

OX10t D10t

pXTotrDTot =

In Steps 2a and 2b we calculate E[Xr,.], [Drotl, 0y, and op,. ..
In Step 2c the product X7, D7, 1S
XrotDrot = X1(D1 + D3 + D) + X5(Dy + D3 + Dy) + X4(Dy + D3 + Dy)
XrotDror = X1Dy + X1D3 + X, Dy + X,D; + X,Ds + X,D, + X,D; + X,D3 + X,D,
In Step 2d, we calculate

E[XrotDrot] = tix,tp, + Ux,tp, + tx, Up, + tx,Up, + Ux,Hp, + Hx,Up, t Ux,Hip, T
MUx,MUp, T+ Ux, HUp,

and

E[X7otlE[Drot] = E[X1D,] + E[X1 D3] + E[X,D,] + E[X,D;] + E[X,D3] + E[X,D,] +
E[X4D1] + E[X4D3] + E[X4D,4]

For each pair X; and D;, the term E[X;D;] = Hxtp; + Px,p0x,0p,

By inspection we see the only remaining terms in E[X;o:Drocl — E[X70t1E[Dro:] Will be
the sum of all pairs of Px;p;0x;0p; Let us assume for simplicity that Pxip; =1 fori=j

and py.p. = 0 for i # j. This reduces the numerator of the correlation expression in Step
ij
1to

E[XrotDrot] = E[Xrot)E[Drot] = px,,p,0%,9p, + Px,,0,0%,00,
Dividing by the product oy, ,0p,,, We have

_ Px,,p,9%,0p, * Px,,0,9%,0D,
PXtot.Dror —

JXTotJDTot
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Since X; = D;r;, we can reduce this correlation to a combination of rates and task durations

2 2
_ Pxy,p;710p, " + Px,,0,740p,
pXTot'DTot -

OX10t9DT0t

We see from this example that if schedule durations in the critical path are uncorrelated,
they drop from the numerator of the expression of total cost and schedule correlation and it
becomes a sum of covariance terms.

Type I1I-1 Functional Correlation

Type 111 functional correlation exists between pairs of random variables such as two CERSs
Y; and Y, that share a partially-dependent random variable such as their multiplicative
errors. In this case we wish to find

le'Yz y Where Yl S (a1 + lelcl)Sl, Y2 == (az + bzXZCZ)SZ ’ and pglv‘EZ * 0
The formula used to determine the correlation coefficient from Step lis

_ EMY,] - EM]E[Y; ]

- \/ Var(Yl)\/ Var(Y;)
_ E[(a; + b1 X;)ei(az + b, X,?)e;] — El(ag + b X, e |E[(a; + b X, %)e, ]

\/Vﬂr((% + b1X1C1)51)\/V“T((az + b, X,%)e,)
_ E[(ay + b1 X1V)e;(ay + b, X,)e,] — E[(ay + b1 X1V e ]E[(ay + by X, )6, ]

b1b2\/V“r((X1C1)51)\/V51r((X2C2)52)

Using Step 2a, from Equation 8-5, E[Y;] = a; + b;E[X€i]

Pxy

Step 2b, from Equation 8-6 shows, oy, = b;y/Var(X;“'e;). Since X;“ and ¢; are
uncorrelated, we use the propagation of errors method, which results in:

Oy, = bV [E2(X;)Var(e)] + [Var (X, D] + [Var (X;IVar(e)]
Expanding the product of the variables (Y;Y,) in Step 2c results in:
V1Y, = 410,616, + a1bye16,X,2 + aybr 16, X1 + £16,b1 b, X, X,
Taking the expectation of the product in Step 2d,
E[Y1Y;] = aia;E[e16;] + a1b,E[e16,X,2] + ayb, E[e16,X1 ] + by by E[e16,X,7 X,?]

E[Y1Y2] =
a;a,E[&6,] + a1sz[€1£2]E[chz] + azblE[Slsz]E[chl] + b1sz[£152]E[chl]E[chz]

Since Efe;&;,] = pg, e, + Pe,e,0¢,0¢,, We Can reduce this to Efe;e;] = 1+ pg, 6,06, O,
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This results in the expectation term

E[Y,Y,] = a1a2(1 + p£1'820'810'€2) + albz(l + p£1,€20£1a€2)E[X262] + azbl(l +
pgl,gzaglo-gz)E[X:lCl] + blbz(l + pgl,gzo—slo-gz)E[X1C1]E[X2C2]

E[V;]E[Y,] = (a; + b1E[X;])(a; + b,E[X,])
E[Y;]E[Y,] = aja, + a1 b, E[X,%] + a; b E[X; ] + by b, E[X, 1] E[X,]
Calculating the numerator of the correlation equation:

E[Y;Y,] — E[Y,]E[Y,]
=a,a,(1+ Pel,szael‘fsz) +a;b,(1+ Pel,szael‘fsz)E[chz]
+ a2b1(1 + pgl'gzaglagz)E[chl] + b1b2(1 + pgl'gzaglo'gz)E[chl]E[chz]
— (a1a; + a1bE[X;] + a; b E[X1 1] + by b, E[X1 ] E[X,2])

Cancelling terms:
E[Y1Y;] — E[YZ]E[Y;]
= a1a2 (Hpsl,szaslo-sz) + a1b2(1_+-p€1,£20-€10-£2)E[XZCZ]
+ azbl(Hpgl,gzaslagz)E[X161] + blbz(Hpgl,gzO-Slo-gz)E[X161]E[X2C2]
—_ €z €x €x €z
(exetr+earbr Bt 2 e X+ brb BB
E[V1Y,] — E[Y,]E[Y,]
= a40; (pel,sz 051082) + a1 b, (pel,ez Uslaez)E[chz]
+ a2b1 (psl,szaslasz)E[chl] + b1b2 (p£1,£2Gslo-ez)E[chl]E[chz]
E[Y1Y;] — E[YZ]E[Y;]
= (Pel,ezo'slo'ez)(alaz + a1 b, E[X;] + apbi E[X, ]
+ bib E[X, ] E[X,2])

Finally, using Step 3 we arrive at:

_ (Pel,ez)(‘haz + a;b,E[X,?] + apby E[X, ] + by b, E[X,“]E[X,%])
M/ [E>(XVar(e)] + [Var(X;D] + [Var(X;)Var ()]

Pxy

Case 1: if Ci = 1, then Yl = (ai + biX)Si

(Psl,sz)(%az + a1 by, + azbipy, + b1bzﬂxlﬂxz)
[1bi/[E2(X)Var(e)] + [Var(X)] + [Var(X)Var(e;)]

Pxy =

Case 2: if a; = 0, and ¢ = 1 then Yl = bix{fi
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(p£1,£2 ) (bl b, Ux, Ux, )
[1biy/[E>(X)Var(e)] + [Var(X)] + [Var (X)Var(g;)]

Pxy =

Type I11-2 Functional Correlation

Type 111-2 functional correlation exists between pairs of RVs that are related to each other
through different functions of their dependent variables. One example of Type IlI-2
correlation is the correlation between two summary-level (parent) WBS elements that have
correlated lower-level WBS elements (i.e., their children). The WBS shown in Table 8-6
has costs that are correlated with p (a correlation matrix).

Table 8-6 Example WBS

WBS u g

1. 37.000 10.325
1.1 10.000 4.000
1.2 12.000 5.000
1.3 15.000 6.000
2. 36.000 10.555
2.1 18.000 7.000
2.2 6.000 3.000
2.3 12.000 5.000

The matrix, p, representing the correlation between each of the lower-level WBS elements
is shown below.

"1 02 02 02 02 02
02 1 02 02 02 02
“lo2 02 1 02 02 02
P=lo2 02 02 1 02 02
02 02 02 02 1 02
02 02 02 02 02 1

Using the values of og; of the lower-level WBS elements shown in Table 8-6, we are able to
compute the standard deviations of summary-level WBS elements o; , 05, and op,;. The
correlation matrix above can be partitioned into four sub-matrices, or partitions. The
matrix shown in Figure 8-1 shows the partitions used to calculate o; (upper left) and o,
(lower right).  The remaining two partitions represent the correlation between WBS
elements that are children of different parent WBS elements.
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Pij 1.1 12 13 21 22 23
1.1 1 0.2 0.2 0.2 0.2 0.2
1.2 0.2 1 0.2 0.2 0.2 0.2
1.3 0.2 0.2 1 0.2 0.2 0.2
2.1 0.2 0.2 0.2 1 0.2 0.2
2.2 0.2 0.2 0.2 0.2 1 0.2
23 0.2 0.2 0.2 0.2 0.2 1

Figure 8-1 Partitioned Correlation Matrix

The correlation coefficient between WBS elements 1 and 2 can be represented by p; ,.
This value is related to the lower left and upper right correlation coefficients in the
partitioned correlation matrix.

Remembering that o752 = Y21 0,2 + 2 X 3o 41 X jo1 PjkT)0k, WE Can express orye in two
ways. The first uses the variances and covariance of the summary elements,

Orot? = 017 + 0% + 2py ,010,, and the second uses the variances and covariances of the
lower-level WBS elements,

O-Totz = 01.12 + -+ 02.32 + 2(01.1,1.201.101.2 + -+ P2.2,2.302.2(72.3)-

Since both equal o,;, we can say

012 + 0,7 + 2012010, = 0117 + -+ 0237 + 2(p14,12011012 + =+ 022,23022023)
By solving for p, ,0,0,, we get the correlation between WBS elements 1 and 2:

_ (P11,12011012 +"'+P2.2,2.30'2.20'2.3)"‘%[(01.12+"'+Uz.32)—(012+0'22)]

P12 =

0102

8.6.1 Type III-2 Functional Correlation Example
For our example, we will continue the calculation with values from Table 8-6.

If we calculate o7, using lower-level WBS elements we have o7,.2 = 160 (Or o7, =
17.550).

Finding the terms for the formula used to calculate the correlation coefficient between
WABS elements 1 and 2, we have:

(0-1.12 + -+ 0-2.32) = 160, and (0-12 + 0-22) = 218, SO

(01.12+"'+02.32)—(U12+022) _ (160-218) _
2 2

—29,

(P1.1,1.201.101.2 + et pz,2,2,302,202,3) = 74, and
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(74)+(-29) 45

P12 = (10.325)(10.555)  108.974 0.4129

Using this value, along with o, and g, we have or,.* = 0,% + 0,2 + 2p; ,0,0,.
Oror = (10.325)2% + (10.555)% + 2(0.4129)(10.325)(10.555) = 160, or o7, = 17.550.

8.7 Section Summary

Knowing how to compute functional correlations allows us to use MOM summation in a WBS
structure and to solve many of the problems germane to probabilistic schedule network analysis.
The functional correlation between elements of cost and schedule models allows the analyst to
determine their influence on the total variance of an estimate and to construct joint probability
density functions of pairs of modeled variables such as cost and schedule.
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9 Discrete Risks
Analysts may need to include the probabilistic impacts of unique, independent, and
discrete risk events in an estimate developed with a particular method (e.g., parametrically,
with a CER) that does not account for their impacts in their underlying assumptions. We
will define a set of individual risks, R;, as independent events with respect to (WRT) each
other. We will also assume each R; has a probability of occurrence of P; and an associated
impact of D;.>®> These unique, independent risks are denoted as R;(P;, D;).

The PMF for each R; is:

_ Pi X = Di 9-1
fri(x) = {1 — P; ;otherwise

The PMF fz (x) has two possible values: one in which the risk occurs with probability, P;,
and one where no risk occurs with probability 1 — P;. This discrete risk has two possible
states, or a set of potential outcomes. The problem becomes more interesting (and
practical) when we are dealing with more than one risk. If we have n possible risks,
wheren > 1, we will have k risk states (possible outcomes) as defined by the binomial

coefficient®®, $;: 0 < i < k, where:
n -
k:Z?zo(i):zn 32

When we add a single discrete risk (R;) to the estimate (C), a new type of distribution
called a mixed distribution®® is formed from the continuous distribution of C and the
discrete distribution of R, (Evans & Rosenthal, 2010).>> The mixed distribution will have
mean u,, and standard deviation a),. The statistics of the mixed distribution are not well
publicized in the cost analysis literature, so we will first introduce the formulae for u,, and
oy for the simple single-risk case, then the more difficult multiple-risk case, and finally the
general formulae that treat the impacts of a discrete risk as random variables.

9.1.1 Single Discrete Risk Case
In this case, we have one discrete risk (R,) and therefore two possible states defined by k,
where k = 21 = 2. These states are: (1) S, = R, where R,does not occur, and (2) S; =
R;, where R,does occur. This situation is depicted in the Venn diagram in Figure 9-1.

52 The impact, D;, may be either a discrete or a random variable (with parameters pp, and op,). When D; is a
random variable, the discrete risk R; is actually a mixed distribution.

>3 By an “outcome,” we mean a combination of the n possible risks composed of those that actually occur.

> The mixed distribution is also called a “mixture distribution”.

> Evans, M. J., & Rosenthal, J. S. (2010). Probability and Statistics: The Science of Uncertainty, 2nd Ed.
New York, NY: W. H. Freeman and Co.
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Figure 9-1 Venn Diagram Representation of Single-Risk State

If we use the same continuous distribution (C), and apply the discrete risk (R;) with
probability of occurrence P; and cost impact D, then this results in a multimodal, mixed
probability distribution.  This multimodal probability distribution will have k = 2
localized peaks or modes, defined by the number of possible states with the height of each
mode defined by the probability of occurrence of the two states, S, and S; (Figure 9-2).

10,1P,

p(x)

D,, P,

Figure 9-2 Probability Distribution of a Single Discrete Risk

When P; = 0.5, the probability of Sy, P(S,), is equal to the probability of S;, P(S;).
Since S, and S; have equal probabilities of occurrence, we expect the heights of the modes
of the bimodal distribution to be equal, as shown in Figure 9-3, and the mean of the mixed
distribution to be halfway between the two modes of the distribution.
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p(x)

] |

Figure 9-3 Normal Probability Distribution, Cy, + R4, with R{(0.5,D;)

When P; < 0.5, the probability of Sy, P(S,), is greater than the probability of S;, P(S;).
Since S, has a greater probability of occurrence than S;, we expect the height of the mode
formed by S,to be greater than the mode formed by S;as shown in Figure 9-4.
Additionally, the mean of the mixed distribution will be smaller than in the case of Figure
9-3.

p(x)

| |

Figure 9-4 Normal Probability Distribution, Co+D4, with Low P;

It is convenient to provide the information about the possible states, their probabilistic
meaning, impact, and probabilities of occurrence in a state table such as the one shown in

Table 9-1.
Table 9-1 Single Discrete Risk State Table
State, S; Definition Risk Impact, Dy, Probability, P(S;)
So =R, No risks occur 0 [1—P(R)]
So =R R, 0occurs Dy P(Ry)

9.1.2 Mean of Mixed Distribution
The uy, and gy, of the mixed distributions will be weighted by the probabilities of
occurrence of the two states, P(S,) and P(S;). uy, is calculated using Equation 9-3.

v = 250 P(Ss, = 20 P(S) (1 + Ds,) 9-3
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Equation 9-3 reduces to Equation 9-4 for any number of risks (n; 1 < n). This derivation
is found in Appendix C — Derivations.

Uy = Uc + Z;’l=1(Pij) 9-4

Using Equation 9-3 for the single risk case, where there are two states, we can
equate P(S,) = 1 — P(S;). Using Equation 9-3, P(S,) = P,, and P(S;) =1 — P;, so the
mean of the mixed distribution formed by a single risk is py = P(So)us, + P(S)us, =
A —=P)uc) + P, (uc + Dy) =uc+ P D;. This is the same result obtained using
Equation 9-4.

By rearranging terms, the mean of the continuous distribution (C) is shifted in the mixed
distribution formed by the single risk case by u,, — uc = P;D,. Likewise Equation 9-4 can
be easily manipulated to provide the mean shift (6u) in Equation 9-5.

o =y — pe = 7=, (PD;) 9-5

9.1.3 Standard Deviation of Mixed Distribution
The standard deviation of the mixed distribution formed by n discrete risks and k states is
the square root of the variance of the continuous distribution and the probability-weighted
variances of the discrete risk states about py, : >

2 9-6
oM = \/(Uc)z + Zé‘;olP(Si)[DSi — (pm — lJc)] » SO

Oy = \/(Uc)z + Xk P(S)[Ds, — 6u]2, where
Dg,= the impact of a particular state S;

Expanding the summations in Equation 9-6 and using the relationship derived in Equation
9-5, we can derive a relationship for the standard deviation of the mixed distribution
formed by C and a single discrete risk, R;.

ou = Z}I=1(Pij) =PD,

Oy = J (00)2 + P(So)[Ds, — 81]” + P(S)[Ds, — 61]

Using the expressions for P(S,), P(S1), Ds,, and Dg, from Table 9-1, we obtain

% This comes from the analogy of the variance of a distribution to the moment of inertia of an object with
respect to an axis through the center of mass (the parallel axis theorem) from Ref 4: Helstrom, C.W.,
Probability and Stochastic Processes for Engineers, 2nd Ed, Macmillan, New York, 1991. p.113
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oy =+/(9c)? + (1 = P[0 — 6u]? + (P)[D; — 6ul?
om =+/(0¢)? + (1 — P)[—P,D11? + (P)[D; — Py D, ]?

Oy = \/(UC)Z +(1- P1)[P12D12] + (P1)[D12 - 2P1D12 + P12D12]

oy = \/(JC)Z +[P,?D,?| — P|P,*D,?] + [P,D,?] — 2[P,*D;?] + Py[P,*D,?]

oy = \/(Uc)z + [P,D;?] — [P,?Ds?]

This simplifies to Equation 9-7.

oy = \/(UC)Z + (1 - Pl)(P1D12) >

9.1.4 Multiple Risks Case
In the case where we have multiple risks, R;, we have k possible states as defined by
Equation 9-2. In the case where we have n = 3 risks, there will be k = 23 = 8 possible
events as depicted in the Venn diagram (Rubenstein, 1986) in Figure 9-5.>’

Rs

Figure 9-5 Venn Diagram Representation of Three-Risk State

Using the state table approach for the n = 3 risk case, we can list the k = 8 possible states,
their probabilistic meanings, impacts, and probabilities of occurrence as shown in Table
9-2.

> Rubenstein, M. F. (1986). Tools for Thinking and Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
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Table 9-2 Multiple Discrete Risk State Table

State, S; Definition Risk Impacts, Dg, Probability, P(S;)
So=R,NR,NR; No risks occur 0 [1-P][1—P][1— P5]
Si=R,NR,NRy Only R, occurs D, P[1—P,][1—P;]

S, =R,NR,NR; Only R, occurs D, [1—P,1P,[1 — P;]
S3=R,NR,NR; R, and R,occur D, + D, P,P,[1— P;5]
Ss= R, NR, NR, Only R; occurs D [1-P][1—P,]Ps
Ss= R;NR, NR, R, and R; occur D, + D, Pi[1 - PP,
Se= R NR,NRy R, and R; occur D, + D, [1—P]P,Ps

S, = RiNR, NR, All risks occur D+ D, + Ds P,P,P;

When the three discrete risks are combined probabilistically with the estimate (C), the
result is a multimodal distribution with modes defined by the k — 1 = 7 scaled copies of
the continuous distribution (C). The scaling of each of these copies is weighted by that
particular state’s P(S;).

9.1.5 Multiple Discrete Risks Example
In the case wheren = 3, one possible distribution formed by the k = 8 states where
risks Ry, R,, or R5 are present is shown in Figure 9-6. The continuous distribution C is
defined by a normal distribution, N(1,0.2), and the three discrete risks are defined by
R;(P;, D;): Ry(0.4,1), R,(0.3,2), and R5(0.2, 3).

PDFs of Continuous (C) and Mixed (M) Distribution

- —\

p(x)

HE
' ‘
IA" Hm
Y

VLMA

0.000 2.000 4.000 6.000 8.000 10.000 12.000
X

Figure 9-6 PDFs of Continuous (C) and Mixed Distributions

The mean of the mixed distribution is calculated from Equation 9-4 as

= pe + X1 (PD;) = 1+ [(0.4)(1) + (0.3)(2) + (0.2)(3)] = 1+ [0.4 + 0.6 +
0.6] = 2.6.
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The mean shift, u , which is required to calculate o), is calculated using Equation 9-5 as
o = Uy —Uc =2.6—-1.0=1.6.

The calculation of the standard deviation using Equation 9-6 requires calculation of the
probability-weighted distribution of the means of the distributions formed by the k states,

P(S)[Ds, — 6;1]2. These calculations are shown in Table 9-3.

Table 9-3 Three Discrete Risk Example Calculations

gl
=]
%)

.| (Ds,—op)° P(S) P(S)(Ds, — 61)°
(-1.6)% = 2.56 | [0.6][0.7][0.8] = 0.336 | (2.56)(0.336) = 0.8602

(—0.6)2 = 0.36 | [0.4][0.7][0.8] = 0.224 | (0.36)(0.224) = 0.0806
(0.4)2 = 0.16 | [0.6][0.3][0.8] = 0.144 | (0.16)(0.144) = 0.0230
(1.4)2 = 1.96 | [0.4][0.3][0.8] = 0.096 | (1.96)(0.096) = 0.1882
(1.4)2 =196 | [0.6][0.7][0.2] = 0.084 | (1.96)(0.084) = 0.1646

wn

N
U W WIN(-R| O
e o | e e [ i | =
e [ | e | [ | —

S. (2.4)2 =576 | [0.4][0.7][0.2] = 0.056 | (5.76)(0.056) = 0.3226
S, (3.4)2 = 11.56 | [0.6][0.3][0.2] = 0.036 | (11.56)(0.036) = 0.4162
S, (4.4)2 = 19.36 | [0.4][0.3][0.2] = 0.024 | (19.36)(0.024) = 0.4646

Z P(S)(Ds, — 61)" = 2.52

Finally, we can calculate g,,using Equation 9-6 as

oy = J(ac)z + Xk P(S)[Ds, — 6;1]2 =./(0.2)2 4+ 2.52 =/2.56 = 1.6.

The method of preparing state tables to perform the o,, calculations becomes cumbersome
when the number of discrete risks grows large, so we will develop formulae and introduce
a software routine to ease the computational burden.

9.1.6 Binary State Representation

Since the number of expected states for these binomial events given n discrete risks is
always 2™, we can determine which risks occur in each state through binary representation
of the state number S, to S;n_;y. Conveniently, the binary representation of k = 2" states
has n binary digits, or bits, corresponding to the number of risks. Since n binary digits
represent 2™ unique combinations, we can uniquely determine which risks occur in any
state S, to S(;n_y). This is a fundamental application of the number of states of n binary
switches, which is the foundation of Boolean addressing in computers (Kal, 2002).>®

% Kal, S. (2002). Basic Electronics: Devices, Circuits and IT Fundamentals. New Delhi, India: Prentice Hall.
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We will first define the rightmost digit as the first digit which indicates whether R;occurs
in this state (1) or does not occur in this state (0). The digit to the left of the first digit is
the second digit which indicates whether R, occurs or not, and the leftmost digit as the
third, and so on. As an example, we will assume we have three risks (n = 3) and examine
the third possible state, S;. The state index, 3, is represented by the binary number (011).
Since each of the binary digits represents whether a risk, R;, occurs in S; we can
determine: 1) digit one =1, so R,occurs in S5; 2) digit two = 1, so R, occurs in S5 ; and 3)
digit three = 0, so R;does not occur in S5 .

9.1.6.1 Bit Detection
The calculation of P(S;)in Table 9-2 benefits greatly from this method of bit
detection.>® We will define the bit indicator function y; ; to represent the binary value
of bit j of integeri. Using the example for S; above, we can detect the bits
representing the risks R;, R,and R; and determine which of the risks j occurs in S5 .
First,seti = 3theny;; =1,y3, =1,andy;3 = 0.

We can express P(S;) in terms of y; j as

P(S) = X7-1(1 = vi;)(1 = P;) +vi,P; 9-8
Similarly, we can use y; ; to determine the impact of state i, Dg.as

Ds, = Xi-1vi;Dj - 9-9
Equations 9-8 and 9-9 greatly simplify the problem of calculating P(S;), Ds,, and oy,.

9.1.7 Adding Discrete Risks with Impacts that are Random Variables
Until now, we have discussed the situation of discrete risks having discrete impact. Since
the risk impacts are also estimates (and contain some uncertainty), we can modify
Equations 9-4 and 9-6 to accommodate risk impacts that are random variables.

Replacing the discrete value for D; in Equation 9-4 with the mean of Hp;, We re-define
Uy to be

Hm = Uc T Z;'l=1 (P] HDj) 9-10
This remains relatively unchanged as does Equation 9-5, which now intuitively becomes

Su = piy — P = Xj=1 (Pjuu,-)- 9-11

% The number of risks we can detect will be limited by the largest integer we are able to compute and find
the binary equivalent.
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The calculation of g, becomes more complicated by the fact that the impacts of the
discrete risks are random variables. Remembering the equation for the variance of the sum
of distributions in Equation 4-4, we must treat the variance of the sum of the continuous
distribution (C) and the risk impacts (D;) at any particular state in the same fashion.
Using linear algebra (Covert, 2006), we can rewrite Equation 4-4 in matrix form as

or? = o' pa, where 9-12
ois a column vector of standard deviations with
dimension 1xM, and
p is the correlation matrix with dimension MxM.

We will use this convenient expression for calculating the impacts of the variances of
each D; ona,, . To begin, for each state S; , we must compose a (partitioned) vector of
standard deviations ( a; ) of dimension 1xM. Since we will be calculating the variance of
the statistical sum of C and n risks, the number of rows will be M =n + 1. The top row
element is o, and the remaining n rows are the products of Op, Vi representing the binary

detection multiplied by the standard deviation of the risk impact as shown in Equation
9-13.

9c 9-13

Op,Yi1

o;

O-Dnyi,n

Next, we must compose the correlation matrix ( p ) of dimension MxM

1 Pcp, ° Pcpy 9-14
p= Pc:,D1 1 le:,Dn
Pcp, Ppyp, 1

Using the form of Equation 9-12, we calculate the probability-weighted variance aDSiZ for
each state as shown in Equation 9-15.

Ops,* = (Psi"i)TP"i 915

Finally, o is computed by taking the square root of the two components that determine
the variance of the mixed distribution: 1) the variance of the sum of the probability-

weighted variances (Equation 9-15), and 2) the probability-weighted distribution of the
means of the distributions formed by the k states Equations 9-6 and 9-11.
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oy = J 2ot P(SY) (GDSi)Z + {P(Si) [DSi ~ Lj=1 (Pf'uDj)]z} o

o = 225 P60 {(o0s,) + s~ e’}

Equation 9-16 reduces to Equation 9-6 when all o, = 0 and tp; = D;j.

9.1.8 Discrete Risk Numerical Example
As a demonstration, we will use the multiple discrete risks example shown previously,
except each D; will be defined by a normal distribution N[y, o] with the parameters shown
in Table 9-4, and ( C ) defined as a “risk” with 100% probability of occurrence. We will
use a constant value of p = 0.2 between all random variables.

Table 9-4 Three Discrete Risk Example Inputs

u a P;
C 1.0 0.2 1.0
Ry 1.0 0.2 0.4
R, 2.0 0.3 0.3
R; 3.0 0.6 0.2

Using the example inputs, we can easily calculate u,, using Equation 9-10 as follows:
Uy = 1.0 + (0.4)(1.0) + (0.3)(2.0) + (0.2)(3.0) = 2.6

Next, we calculate §u using Equation 9-11
i =", (PjuDj) = (0.4)(1.0) + (0.3)(2.0) + (0.2)(3.0) = 1.6

Then calculate o ? using 9-15 and p = 0.2 and ap, * = Ziz:gl(PSiai)Tpa,- = 0.1892.

Finally, we combine the terms in Equation 9-16

oM = \/ lzzalp(si){(%si)z +[Ds, = 5#]2} = 1.6460

To check this result, a 100,000-trial statistical simulation using Crystal Ball ® using the
same inputs for the example shown above provided the following results:

Exact (Eq. 4-48 & 4-54) Simulated
Uy = 2.6000 Ay = 2.6004
oy = 1.6460 6y = 1.6495
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The difference between the simulated results and the calculated results is due to the
statistical simulation’s inability to exactly sample perfectly-distributed correlated random
variables. We can extract the 100,000 samples and determine 1) the correlation of the
samples used in the simulation, and 2) the frequency of S;. Using this information, we can
re-calculate u,, and a,, to see the effect of sampling error from the simulation.

Table 9-5 shows the Pearson correlation of the statistical samples. Note the correlation
coefficients between different R; (shaded on left) were defined to be p = 0.2 but are
slightly different in the simulation samples. Also, the different independent risk
probabilities P; (shaded on right) were specified to be uncorrelated probabilities of
occurrence, but do not have p = 0.0. Additionally, there is spurious correlation between
the PDF of the risks ( C and R; ) and the probabilities of occurrence of the risks (in italics).

Table 9-5 Correlation of Samples from Statistical Simulation

c R, R, R, P, P, P
C 1.0000 |0.2015 |0.2048 [02002 |[-0.0007 | o0.0008 -0.0015
R, 1.0000 | 02111 | 0.2074 | 0.0005 0.0011 0.0039
R, 1.0000 | 0.2077 |-0.0038 | 0.0030 0.0055
R, 1.0000 | 0.0011 0.0024 -0.0002
P, 1.0000 0.0020 0.0026
P, 1.0000 0.0017
P, 1.0000

Since the risks can no longer be assumed to be independent, we can extract the state
probabilities P(S;) , which are provided in Table 9-6.

Table 9-6 State probabilities P(S;) from Statistical Simulation

N

P(Sy)
0.33706
0.22326
0.14345
0.09623

0.0834
0.05628
0.03609
0.02423

N|joOojun|h{WIN|FL|O

We can substitute the sampled values from the simulation (p from Table 9-5 and
P(S;) from Table 9-6) into Equations 9-10 and 9-16. This results in calculations for the
mean and standard deviation of the mixed distribution much closer to the simulated values.
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Exact Simulated Exact Using p and
(Eq. 4-48 & 4-54) P(S;) from Simulation
Uy = 2.6000 Ay = 2.6004 Uy = 2.6000
oy = 1.6460 oy = 1.6495 oy = 1.6489

The evidence that the statistical simulation cannot exactly sample perfectly-distributed
correlated random variables shows the equations developed in this report are more reliable
calculators of discrete risk than are simulated results.
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10 Maximum and Minimum of Random Variables

The maximum duration of the paths of a schedule network define its critical path, and in a
probabilistic schedule, the distributions of the probabilistic critical paths define the
probabilistic schedule duration. If the tasks in a schedule network are defined by
probability distributions (i.e., PDFs or PMFs), we may need to find the moments and the
distribution of the maximum of two or more probability distributions where these tasks
merge. If the finish date of a schedule is defined by the latest end date of three tasks, A, B,
and C, which is defined by max(4,B,C). This is equivalent to max(max(4,B),()
and max (4, max(B, C), which is an important consideration because it allows us to deal
with the problem of finding the moments of the maximum of distributions in pairs.

The random variable representing the maximum of two correlated distributions X; and X,
can be defined as the function V = max{X;, X,}. To find the PDF of VV, we must first find
its CDF and differentiate to find the PDF. In the independent case,

Fv(v) = FXl(U)FXZ(U)' 10-1
To find the PDF we take the derivative WRT. v:
fr ) = fx, W)Fy, ) + Fx, W) fx, (V). 10-2

The correlated case is much harder to solve. Fortunately, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems (Nadarajah & Kotz, 2008) provides a method of
calculating the first two moments of the max and min of two correlated Gaussian
distributions.®

The PDF of X=max(X1,Xz) is f(x) = f1(x) + f2(x), where 10-3

1 H1—X p1,2(U1—X) (12—x)
G) = 2o (M) Lalan)
! 71 ( 71 ) U1J1—Pl,22 02J1—P1,22

f2 (X) — i(P (Mz—x) o p1,2(H2—x) _ (11—x)
0z 92 02J1—P1,22 01\/1—171,22

Where ¢(-) and @(-) are the PDF and the CDF of the standard normal distribution,

respectively.

% Nadarajah, S., & Kotz, S. (2008, Feb.). Exact Distribution of the Max/Min of Two Gaussian Random
Variables. IEEE Transactions on VLSI Systems, 16(2), 210-212.

%1 The integrated circuit industry has a deep interest in scheduling methods and routines which stems from
the need to calculate signal transit and arrival times at nodes in integrated circuit paths.
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The first two moments of X = max(X,, X,) are

B = (252 (252 00 (5
£ = o+ 00 (455) 4 (0 10 (452) 4

(U + uz)0¢ (%)

9 = \/0-12 +O-22 - 2,01‘20-10-2

where p, , = Pearson correlation between tasks X; and X,, and
0% = E[(X —w)?] = E[X?] — u?

10-4

10-5

10-6

10-7

The moments of the maximum and minimum of two joint lognormal distributions have
been published (Lien, 2005) and are useful when dealing with maximums of sums of
random variables that exhibit lognormal behavior.®> The first two raw moments of the

bivariate lognormal distribution are provided in 10-8 and 10-9.

E[X] =
- 2_ _ 2_
1y @ [(P1 P2)+((21 poloz)] + 1, ® [(Pz P1)+(‘22 poloz)]
21 = (o2 + y2) (P22 2 4 2 (P2zP
E[X2] = (of + 1) (252) + (oF + D)o (52)
6 = Q? + Q2 —2pQ,Q, where the correlation between
their underlying normal distributions is

p= ﬁln ll + P12 (\/[le — 1][€Q22 — 1])] , and

p12 = Pearson correlation between lognormal distributions of
tasks X; and X,

P;, P,, Q,,and Q, are parameters of the lognormal distribution
defined in Equations 4-5 and 4-6.

10-8

10-9
10-10

While these are useful expressions for calculating the moments of Gaussian distributions
that are either user-defined or formed through the statistical summation of PDFs of serial
tasks, they do not provide a solution to the problem of finding moments of the maximum
of two non-Gaussian distributions (e.g., uniform or triangular). Fortunately, the moments
of distributions in which we are interested represent the finish dates of tasks, and since
these are often based on sums of durations of several tasks, we can assume the sum to be

%2 ien, D. (2005). On the Minimum and Maximum of Bivariate Lognormal Random Variables. Extremes, 8,

79-83.
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Gaussian. For completeness, we do need a method of working with the order statistics of
non-Gaussian PDFs.

10.1.1 Maximum and Minimum of Correlated Non-Gaussian PDFs

The applied probability and statistics literature provides little insight into finding either the
maximum or minimum of correlated non-Gaussian distributions. So, when we are dealing
with correlated non-Gaussian distributions, the task is more difficult. For instance, when
we are interested in the PDF of the maximum (or minimum) of two uniform distributions
we have to go back to the fundamentals and derive a solution. Figure 10-1 provides
examples of pairs of uniform distributions U, (L., H;) and U,(L,, H,) that represent cases
in which the maximum of these two distributions will be different.

Base Distribution, U(L1, H1)

1 L Hi 2 Distribution, U(L2, H2) ; H2 < L1
| | max(U1,U2) = U(L1, H1)

L2 H2

: : 2nd Distribution, U(L2,H2) ; L1 < H2 < H1,L2 < L1
2 | max(U1,U2) = {f(L1, H2,p12); U(H2,H1)) }

: 2nd Distribution, U(L2,H2) ; H1 < H2, L2 < L1
3 | max(U1,U2) = {f(L1, H2, p12); U(H2, H1)}

L2 i i H2

; 2nd Distribution, U(L2,H2) ; L1 < H2 < H1,
4 : L1 < L2 < H1, max(U1,U2) = f(Li, Hi, p12)

PR

‘ 2nd Distribution, U(L2, H2) : H1 < H2, L1 < L2 < H1,
5 max(U1, U2) = {f(H1, H2,712); U(H1, H2)}

L2 | H2

2nd Distribution, U(L2,H2) ; H1 < L2
6 max(U1, U2) = U(L2, H2)

Figure 10-1 Pairs of Uniform Distributions with Varying Ranges

To find the PDF of the maximum of two distributions, we first must define a random
variable, V = max{X,,X,}, where X; = U(L,,H,), and X; = U(L,, H,). We find the PDF
of V by first finding its CDF, F, (v).

Fy(w)=P{V <v) = P{X; <v, X, <v} 10-11

In the independent case, F,(v) = Fx(v)Fy(v). Now take the derivative with respect to v

to get
fr@) = fx(WF ) + fy(v)Fx(v) 10-12
The k™ moments are:
E[f )] = [7, v* fy (w)dv 10-13
112
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From which we can find the mean,

u=E[fy(v)] 10-14
and standard deviation of the resulting distribution.

0% = E[f,* ()] — 42 10-15

The distributions of the maximums of the pairs of uniform distributions defined in Figure
10-1 are shown in Figure 10-2.

vt &u2 max(U1,U2) ""'"'"E
| | L1 H1 |

L2 H2 ¢
(2]
L2 {H2
[ 3 |
T |
=
(2 Ho

| 5 |

Figure 10-2 Maximum of Pairs of Uniform Distributions with Varying Ranges

In the correlated case, the Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions
may provide a solution. The formula for the joint CDF is

W(x,y) =Fx)Gy){1 + a[l —F(x)][1 — G(y)]}, where the 10-16
marginal PDFs H(x, ®) = F(x) and G(o0,y) = G(y)

. _ f 1 1
Unfortunately it can only model a limited range of Pearson correlations®®; — 3<pP<3.

When pyy = 1, the two distributions covary in the same direction with respect to (wrt) their
means. When py, = —1, they covary in opposite directions wrt their means. When pyy #
0, and — 1 < pyy < 1 the results are rather interesting.

88 Schucany, W.R., Parr, W. C., and Boyer, J.E., (1978). Correlation Structure in Farlie-Gumbel-Morgenstern
Distributions. Biometrika, 65(3), 650-653.
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We will show some statistical simulation results to illustrate the effects of correlation on the
maximum of two uniform distributions in the following figures. We assume U; [1,5], U, [1,3],
and p = {—1.0,—0.9,-0.5, 0, 0.5,0.9,1.0}.

100,000 Trials: Spit View 100,000 Displayed
Max(U1(1,5),U2(1,3))r=-1 Statistic Forecast values

Trials 100,000

0.03 Base Case 300

Mean 3
Median 3.00
Mode —

= eea Standard Deviation 078
= \Variance 0£3
2 Skewness 05931
£ Hurtosis 200

Coeff. of Viariability 02330

o
2

Minimum 233
Maximum 5.00
Mean Std. Error 0.00

120 160 200 240 280 320 360 400 440 480

b 300 Certainty: |49 904 % { |infinty

Figure 10-3 Max of U; and U, where p =-1.0

100.000 Trials: Splt View 100.000 Displayed
Max(U1(1,5),U2(1,3))r=-09 Statistic Forecast values
Trials 100,000
003 Base Case 300
Mean 33
Median 300
Mode -
> 002 Standard Deviation 081
EH Variance 066
! Skewness 05143
E Kurtosis am
e Coeff. of Variability 02453
Minimum 143
600  |Maximum 500
. Mean Std. Errcr 0.00
000 — . g . . . . -y o
120 160 200 240 280 320 360 400 440 450
| JEL Certainty: |49.901 % o iy

Figure 10-4 Max of U; and U, where p =-0.9

100,000 Trals Spit Vhew 100,000 Displayed
Max(U1(1,5),U2(1,3))r =05 Suatistic Farecastvalues

Trials 100,000
2,700 Base Case 300
Mean 325
2400 | pegian 300
0.02 2,100 Mode —_—
E 1g00 T |Stancard Deviation 0.89
= E Variance 080
= 150 [Skewness 02784
& 1200 2 [Murtosis 205
001 2 | ot o variatily 02781
0 Minimum 106
800 Maximum 500
L o Mezn Std. Exror 000

0.00 T ' y " ] q4 o

120 160 200 240 280 320 380
b [200 Cenainty: 49,901 % { |infney

Figure 10-5 Max of U; and U, where p =-0.5
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100.000 Trials Spin View 100.000 Displayed
Max(U1(1,5),U2(1,3)r =0 Statistic Forecastvalves |
. Trials 100.000
002 Base Case 3.0
Mean 317
Median 3.00
> Standard Deviation 0%
= Variance 057
= oo Skeuness. 01137
&‘ 2 |Kuresis am
Coeff. of Variability [k
Minimum 101
Maximum 500
Mean Std. Error 0.00
000 - T T 1 '
120 180 200 240 280 320 380
[ JEL] Certainty: |49.901 % 4 |ty

Figure 10-6 Max of U; and U, where p = 0.0

100.000 Trials: Splt View 100,000 Displayed
Max(U1(1,5),U2(1,3))r=05 Statistic Forecastvalues |
1400 Trials 100,000
Base Case 100
1200 |Mean 308
Medan 300
oo 1,000 (Mode =
ey 1 |Stendard Deviztion 108
= 800 B [Variance 116
B € |Skeaess 00435
2 - 800 5 urtosis 190
Coeff. of Variability 03438
- 400 [Minimum 100
Maximum 500
200 [Mean Sid. Error 0.00
000 Y g . " " " ']
120 180 200 240 280 320 380
b 300 Certainty: |49 901 % 4 [ihrey
Figure 10-7 Max of U; and U, where p = 0.5
100.000 Trials: Splt View 100,000 Displayed
Max(U1(1,5),U2(1,3));r=09 Stabistic Forecastvalues |
Trials 100,000
Base Case 300
i Mean a0
Median 300
001 Mode -
= - |Stendard Deviation 115
= 3 |Variance 13
o om -1
s S |Swewness 00106
£ 5 Kurtosis 180
000 Coeff. of Variability 03808
Minimum 100
000 Maximum 5.00
Mean Std. Eror 0.00
000 ; ’ " . ; " "
120 160 200 240 280 320 3860
P 200 Certainly: (49902 | % o [ifinky

Figure 10-8 Max of U; and U, where p = 0.9
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100,000 Trals Spit View 100,000 Displayed
Max(U1(1,5),U2(1,3)r=1 Satistic Forecast valves

100.000

300

300

3.00

115

113
9.3284E-06
180
03848
100

5.00

0.00

léO 180 2.150 240 2%0 320 J.éﬂ 4.|.70 440 480

[ JEL] Certainty: |49.901 % 4 |ty

Figure 10-9 Max of U; and U, where p = 1.0

The PDF of the maximum of the two distributions modeled by a FGM, where p = a/3,
and -1 < a <1)is:

max(Uy, Uz) = h(w) = (1 + o) [Fw)g(w) + fFW)G(w)] + a{f WG [2FwW)G(u) —
2F(w) — 6] + Fwg)[2F w)G (w) — 26(w) — Fw)]}

A plot of this function is shown in Figure 10-10.

Max(U1(1,5),U2(1,3)); FGM

Figure 10-10 Max of U; and U, using FGM Copula

Further work needs to be done to increase the effective use of FGM copulas to find the
maximum of two correlated, non-Gaussian distributions.
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11 Example Problems

To demonstrate the techniques presented in previous sections, we will perform analytic
uncertainty and risk assessments on a parametric estimating model and a resource-loaded
schedule model — both resulting in a joint PDF of cost and schedule. Each example will
model the cost risk, the schedule risk and the joint cost and schedule risk.

11.1 Parametric Estimate Example Problem

The model chosen for the parametric example is an estimate of the cost and schedule used
to explain functional correlation in Section 8. The schedule duration is estimated using a
series of fictitious schedule estimating relationships (SERs). The joint probability
distribution of cost and schedule is formed using the marginal distributions of cost and
schedule. We will demonstrate the formation of these three distributions and compare their
statistics with those generated from a 100,000-trial statistical simulation.

11.1.1 Cost Distribution

To calculate the marginal distribution of the cost of the system, we follow the FRISK
method described in Section 4.2.2. In the first step of the FRISK method, we define the
mathematical problem to be solved — which is defining the WBS of the system and the
CERs. We will reuse the WBS and CERs defined in Section 8 and repeat them in Table
11-1. In the second step of the FRISK method, we define the probability distributions of
the inputs (also shown in Table 11-1), and their correlations.

Table 11-1 Level 1 WBS Elements for Parametric Example

WBS CER,i Drivers X; &
Element, i
1 | Systems Engineering, Y, = 0.498X,%%, PMP L <Zi122 Ui L(1,0.49)
Program Management ~ [6Tpo
Integration and Test P
(SEITPM)
Prime Mission Product | 310, Y, Sum of Hardware and 0
(PMP) Software costs
2 | Antenna Y, = 34.36X,,°5X,,%%¢, Aperture Diameter (m), | T(2,3,4) L(1,0.30)
Frequency (GHz) T(16,17,18)
3 | Electronics Y; = 30.06X5%8¢, Frequency (GHz) T(16,17,18) L(1,0.40)
4 | Platform Y, = 26.91X,,°5X,,%%%¢, | Aperture Diameter (m), | T(2,3,4) L(1,0.38)
Number of Axes Constant =2
5 | Facilities Ys = 1.64X"8ec Area (m?) T(18,20,22) L(1,0.25)
6 | Power Distribution Y, = 0.32X,>%¢, Electrical Power (W) T(1200,1425,1875) L(1,0.18)
7 | Computers Y, = 0.58X,%% ¢, MFLOPS T(180,200,220) 1(1,0.31)
8 | Environmental Control | Y5 = 1.94X5%%¢g Heat Load (W) T(1100,1200,1300) L(1,0.21)
9 | Communications Yo = 5.62X4%¢, Data Rate (MBPS) T(25,30,35) L(1,0.28)
10 | Software Y10 = 1.38X10 €10 Effective Source Lines T(80,90,130) 1(1,0.32)
of Code, eKSLOC
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There are no correlations between different technical parameters used as inputs to the
CERs in this example, and there are no correlations between the error of CER 1 and any
errors of the other CERs, but the correlations between the errors of CERs 2 through 10 are
sett0 0.2 (pgi,gj=o.z; Vi > 2). The correlation matrix of the errors is shown in Figure 11-1.

P 1 2 3 4 5 6 7 8 9 10
1
2 0
3 o 02
4 o 02 02
5 o 02 02 02
6 of 02 02 02 02
7 o 02 02 02 02 02
8 of 02 02 02 02 02 02
9 of 02 02 02 02 02 02 02
10 of 02 02 02 02 02 02 02 02

Figure 11-1 Correlations between Errors of CERs 1 through 10

There is a mix of different types and orders of functional correlation in this example
problem as shown in Figure 11-2. CER 1 is functionally correlated to the other CERs
through its use of PMP as its cost driver (a Type I-2 correlation). CERs 2 and 3 and CERs
2 and 4 are correlated through the reuse of a cost driver (a Type IlI-1 correlation). The
remaining CER pairs are correlated to each other through their correlated multiplicative
errors (a Type Il1-1 correlation).

Pyivi 1 2 3 4 5 6 7 8 9 10
1
2| 12
3 1.2 | -1
4 122 | -1 | -l
s| -2 | -1 | -l |-l
6 -2 | -1 | w1 |-l |-l
4 T AT AT AT AT AT
| I T T T T T T
| I T AT AT AT AT AT AT
0 I TES TS TS T T T T T

Figure 11-2 Types of Functional Correlation in Example Problem

11.1.2 Probability Distributions
The third step of the FRISK method is the calculation of the means and variances of the
WBS element costs. The first WBS element, SEITPM, is a cost-on-cost CER of the PMP
(i.e., the sum of the individual estimates of WBS elements 2 through 10). The remaining
WABS elements are estimated using non-cost-driven CERs. Because the first WBS element
relies on the cost estimates of the other WBS elements, we must first calculate the means
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and variances of the costs of WBS elements 2 through 10 (i.e., PMP cost) then use those
results to calculate the mean and variance of the first WBS element.

The moments of the estimates from non-cost-driven CERs are calculated using the
propagation of errors method demonstrated in Section 7. As an example, WBS element 6
is estimated using the following CER from Section 8:

Yy = 0.32X,%%,
E[X6] = ux,, which is found using Equation 4-1.

Since X is defined by the triangular PDF, T(1200,1425,1875),

_ 1200+1425+1875

Xe : = 1500

E[Y,] can be found by using expectation methods or Mellin transforms. In this example,
we will use expectation methods to compute E[Y;].

E[Ys] = E[0.32X,"%¢s] = 0.32E[X,*°]E[e¢], and since E[gs] = 1, E[Y,] = 0.32E[X,"°].

Since X, is a triangular PDF, we must find the expectation of a triangular PDF raised to a
power, which is:

E[ k] _ 2 {Mk+2_Lk+2 L Mk+1—Lk+1} 2 { Hk+1_Mk+1 Hk+2_Mk+2}
k+1 k+2

T w-m-1) U k+2 k+1 (H-L)(H-M)

Substituting the parameters L, M, H and k using our example, E[X6°'9] = 721.626, so
E[Ys] = (0.32)(721.626) = 230.920.

Var(X,) is calculated using the square of one half of the population standard deviation of
the distributions parameters. This equates to:

STDEVP(1200,1425,1875)
2

2
Var(X,) = ( ) = 19687.5, 50 gy, = V19687.5 = 140.31

The variance of Y is calculated using the propagation of errors method, since the CER, fy_,
and its error are independent RVs.

Var(Y) = (,ufyeage)z + (nyf,)z + (afyeage)z ; Where

os, = 0.18 (from Table 11-1), and Hey, = 230.920 (found using functional correlation
Step 2a)

afy6is found using the equation for the transformation of a triangular PDF from Section
4.3.3.
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Ofyg =

b 2 1 M2c+2_j2c+2 L M2c+1_j2c+1 1 H H2ct+1_pp2c+1 H2c+2_pp2c+2 ”f 2
- + - -G
(H-L) [(M—L){ 2c+2 2c+1 } (H-M) 2c+1 2c+2 b

By substituting the coefficient b = 0.32 and the triangular distribution parameters, L, M
and H into this equation we get Ofy, = 19.428.

So oy, = \/ (,ufy6crg6)2 + (O'fYG)Z + (Ufy6(fe6)z

ay, =/ [(230.920)(0.18)]2 + [19.428] + [(19.428)(0.18)]? = 46.015

The remaining moments of the cost estimates of the non-cost-driven CERs in the example
problem are computed in a similar manner and are shown in Table 11-2. The means and
standard deviations of the analytic results match closely with the results obtained using the
100,000-trial statistical simulation. The results of the analytic method and the statistical
simulation are a close match.

Table 11-2 Moments of WBS Elements with Non-Cost-Driven CERS

WBS Analytic Simulation
# i c 1} c
2 572.706 177.022 572.676 176.900
3 289.953 116.136 289.962 116.172
4 83.829 32.484 83.824 32.463
5 18.014 4.544 18.014 4.543
6 230.920 46.015 230911 45.977
7 58.248 18.186 58.244 18.172
8 33.068 6.960 33.068 6.959
9 119.965 34.446 119.962 34.420
10 347.121 120.764 347.121 120.787

The PMP cost is the sum of WBS elements 2 through 10, so its mean is ppyp = X3° u; and
its standard deviation is calculated through the linear algebraic relationship, oppyp =

oTpo. upyp is simple to compute and is upyp = X3% 1; = 1753.825. The calculation of

opup requires we know the correlation between pairs of CERs from 2 through 10, p, which
is the functional correlation sub-matrix between the elements of PMP.

Functional Correlation Matrix
The functional correlation matrix shown in Figure 11-2 contains a combination of Type I-
2, 11-1 and I11-1 functional correlations. We use the examples provided in Section 8 of this
report to develop these correlations, which are shown in Figure 11-3.
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Pyivi 1 2 3 4 5 6 7 8 9 10
1
2| 0.2614
3| 0.2098| 0.1969
4{ 0.1454| 0.2306| 0.1959
5 0.1156| 0.1924| 0.1979| 0.1944
6| 0.1426| 0.1753| 0.1804| 0.1772| 0.1790
7| 0.1273( 0.1927| 0.1983| 0.1947| 0.1968| 0.1794
8| 0.1184| 0.1937| 0.1993| 0.1957| 0.1978| 0.1803| 0.1981
9| 0.1393| 0.1893| 0.1948| 0.1912| 0.1933| 0.1762| 0.1936| 0.1946
10| 0.2085| 0.1785| 0.1837| 0.1804| 0.1823| 0.1662| 0.1827| 0.1836| 0.1794

Figure 11-3 Functional Correlation Matrix for Example Problem

Using the functional correlation sub-matrix (i.e., the lower-right 9x9 elements of the matrix
shown in Figure 11-3) and the sigmas of WBS elements 2 through 10, we can compute
opup = +/0Tpa = 331.917. Now that we know the moments of PMP and the functional
correlation sub-matrix, we can calculate the moments of the first WBS element, py, and
ay,. The results of this example calculation are shown in Section 8 and are repeated in
Table 11-3. The results of the analytic method and the statistical simulation are a close
match.

Table 11-3 Moments of WBS Elements

Analytic Simulation
WBS
# 1] c 1! c
1 413.170 201.048 413.090 200.916
2 572.706 177.022 572.676 176.900
3 289.953 116.136 289.962 116.172
4 83.829 32.484 83.824 32.463
5 18.014 4.544 18.014 4.543
6 230.920 46.015 230.911 45.977
7 58.248 18.186 58.244 18.172
8 33.068 6.960 33.068 6.959
9 119.965 34.446 119.962 34.420
10 347.121 120.764 347.121 120.787

Now that the necessary calculations to compute the moments of the total program cost are
completed, the total cost mean, uy, and the total cost sigma, oy can be calculated.

uy = X1%u; and oy = /aTpa, where o is the vector of the sigmas of all of the WBS
elements (Table x-3), and p is the full functional correlation matrix shown in Figure 11-3.
The results of these calculations are shown in Table 11-4 along with the total mean and
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standard deviation obtained using the 100,000-trial statistical simulation.

results are a close match.

Table 11-4 Moments of Total Program Cost

Analytic

Simulation

n

&)

n

&)

Total

2166.995

443.915

2166.873

443.511

The total program cost is represented as a lognormal distribution and its parameters Py and

Qy are calculated using Equations 4-5 and 4-6. The results are:

P, = 7.452, and Qy, = 0.188.

Using these values, we can compute the percentiles of total cost, which are presented in

Table 11-5.

The plot of the CDF of total cost is shown in Figure 11-4. Note that the original point
estimate calculated using the modes of the triangular inputs shown in Table 11-1 is at the

48" percentile.

Percentile

Total Cost, Y

10%

1637.140582

20%

1789.878287

30%

1908.780462

40%

2016.616222

50%

2122.909227

60%

2234.804788

70%

2361.059157

80%

2517.905056

90%

2752.814045
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Total Cost CDF

—
0.9
0.8 /
07 /
Zos6 /
§ 05 2,106.57,0.48
S04 7/
03
0.2 /
0.1 /
0 ; : / ; ; ; ; .
0 500 1000 1500 2000 2500 3000 3500 4000
Cost, $K

Figure 11-4 CDF of Total Cost, Y

11.1.2.1 Contribution to Variance
The contribution to the variance (CTV) shows which WBS elements most strongly
influence the variance of total cost. The CTV of any WBS element, i, can be calculated

using row i of the functiona

CTV; = o; (p;0)/0oy?, wher

| correlation matrix as follows:

€

o; = the standard deviation of WBS element i
p; = row i of the full functional correlation matrix (a vector)
o = the vector of standard deviations of the WBS elements

oy? = total cost variance

The CTV of each of the WBS elements is shown in Figure 11-5.

WBS cTv Contribution to Variance
1 SEITPM 32% SEITPM i ; |
2 Antenna 27% Antenna |
3 Electronics 14% Electronics |
4 Platform 3% P'a'fff’_rm |
5 Facilities 0% et b tF?;"'tF'eS ]
6 Power Distribution 4% ower bistribution
- Computers |
7 Computers 1% Environmental Control
8 Environmental Control 0% Communications |
9 Communications 3% Software ‘
10 Software 15% 00% 10.0% 20.0% 30.0% 40.0%
Sum 1.0000

Figure 11-5 WBS Element Contribution to Variance

11.1.3 Schedule Probability Distribution
The program schedule is calculated using a fictitious schedule estimating relationship
(SER) defined as the number of months from the authority-to-proceed (ATP) to the end of
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installation and checkout, D = 0.21X,?e,. The SER is similar to the Software CER and
reuses its driver (effective source lines of code). The multiplicative error of the SER, ¢p, is
defined by the lognormal distribution L(1,0.45). Since the SER in this example problem
is similar to the CER of WBS element 10 (Software cost), we substitute the coefficients
and multiplicative error distribution to directly calculate the moments of the resulting
schedule distribution, which are:

1y = 52.823, and o, = 24.935.

This distribution is assumed to be lognormal and has parameters P, = 3.866 and Qp =
0.449. A plot of the CDF of schedule duration is shown in Figure 11-6.

Schedule CDF
. /_
0.9
0.8 //
0.7 /
Zos
§ 05 46.48,0.48
£ 04
0.3 //
0.2 /
0.1 /
0 T T T T T T T ]
0 20 40 60 80 100 120 140 160
Schedule Duration, months

Figure 11-6 Schedule Duration CDF

11.1.4 Forming the Joint Distribution
The joint distribution of cost and schedule duration is formed using the marginal cost and
schedule duration distributions in a bivariate lognormal distribution. This joint PDF is
defined in Garvey (2000) as:**

1

1
BiL ((Pp Py), (Q1' Q2 P1,2)) = fxox, (X1, %2) = e_{fw} ; where
2mQ1 Q2 [1-p% ,Xx1X;

W= 1_2%’2 [(zn(xgi—pl)z 21, (ln(x(;z—Pl) (zn(xgz—pz) + (%)2]’

p1,2 = ﬁln [1 + pX1:X2\/eQ12 - 1\/6022 - 1J1 and

Px, x,1S the correlation coefficient between RVs X, and X,.

 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineeering
Perspective. New York, NY: Marcel Dekker.
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The correlation between cost and schedule is a Type 11-2 functional correlation since cost
(Y) and schedule duration (D) are nested functions of a common input, the effective source
lines of code.

The Type 11-2 functional correlation between cost and schedule duration is defined as:

E[YD]-uyup

Pyp = 570D

The moments of Y and D have been previously calculated, however E[YD] must be found.
By expanding the product, YD, we get:

YD = (312, ¥))(0.21X,"?¢p ), which expands further to YD = (X712, ¥;)(0.21x, ¢p).

A fuller expansion of these terms is necessary to calculate the expectation. Substituting the
equations of CERs 1 and 10 and setting X, = X;,, we get:

YD = (0.498[%i2, ¥;1%%; + 1.38X;0" &9 + 2=, ¥;)(0.21X0 2 ep )
Through distribution of the SER, we get:

YD = (0.498[%{2, ¥;1%%,)(0.21X,"ep) + (1.38X10"%10)(0.21X30 %ep ) +
(Z?:z Yi)(O.Z 1X101'2€D)
Combining constants and similar variables results in:

YD = 0.1046[%2, ¥;1°9X1 0?1 6p + 0.2898X;0°*106p + (Xi=, 1) (0.21X1ep)

Moving X, into the summation, we get a sum with three major terms:

1.270.9
YD = 0-1046[ 2 Yino@] e1€p + 0.2898X 0% e10ep + X0, ¥ (0.21Xp 2ep)

11.1.4.1 Expectation of YD
The expectation of YD is:

1.270.9
E[YD] = E[0.1046[ 19,Y,; Xy005 ]E[el]E[SD] + E[0.2898X,2*|E[e10]E[ep] +
E[¥i-,Y; D].

From the first term, we can break up the X;, component and eliminate E[&, |E[ep], since
they are uncorrelated (i.e., E[e;|E[ep] = 1).

E0.1046 [Zlo v X %]0'9 = 0.1046F [1 38X {12433} 9 12109
: i=2Yi X10% = 0. 38X, 00) gy, +Zi=2YiXD0'9]
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First Term of E[Y D]

1.2 1.2
For convenience, we rename the first term (1.38X10{1'2+E}e10 + 32, Y, Xp09) to (V =
V, + V), which results in:

1.2
v, = 1.38X10{1'2+@}€1o, which, by inspection, is a lognormal distribution.
Computing V4
The lognormal parameters of V; (i.e., P, and Qy,) can be computed as follows:

1.2
1) Compute the moments and lognormal parameters of A = Xlo{l'“ﬁ}:

a. E[A] = [Xlo{”*%}] = E[X,>%%%3] = 119237.5843, and

b. Var(4) = (X1,>°***) = 1115733687, s0
c. Py=11.6511,Q, = 0.2749
d. Propagate errors due to &4, where Eg;] = 1, g,,, = 0.32

2) V; = 1.38A¢,,, so the moments and lognormal parameters are:
a. py, = 1.38u,E[g,] = 164547.866

b. oy, = 1-38\/@42 + upt0,,, % + 0420,,,2 = 68491.075

c. Py, =11.931
d. Qy, =0.400
Computing V,

1.2
The lognormal parameters of V, = Y'7_, Y;X,09 are able to be computed as well. First, we
1.2

must compute the mean and sigma of X 0.

1.2
1) The variable X}, is a triangular distribution, so X,0o has the following moments:
a. U 12=465351,0 12=67.365,
Xp

0. Xpo-9

b. P 12=6.132,and Q 12 =0.144

Xpo0-9 Xpo0-9

o)

1.2

2) For each WBS element from 2 to 9, compute the moments of Y; X0
a. P 12 = Pyi +P 12
X

Y;Xp09¢g,0.9

p0-9g40.

o)

09£,09

2
b. Q 12 1= \/(Qyi)z + (Q 12 i) (in this case X, and CERs 2 to 9 are
i Xp
independent)

The results of these calculations for WBS elements 2 through 9 are shown in Table 11-6.
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Table 11-6 Moments of First Term, Part V,

i Py, Qy, P 12 Q 12 12 o 12
YiXp09o YiXp09o Y;Xp09o Y;Xp09o

2 6.305 0.302 12.437 0.335 | 266509.704 89209.682
3 5.595 0.386 11.728 0.412 | 134930.196 55589.229
4 4.359 0.374 10.491 0.401 39009.722 15643.639
5 2.860 0.248 8.993 0.287 8382.836 2407.118
6 5.423 0.197 11.555 0.244 | 107459.119 26253.462
7 4.018 0.305 10.151 0.337 27105.923 9144.805
8 3.477 0.208 9.609 0.253 15388.452 3895.777
9 4.748 0.281 10.880 0.316 55825.914 17654.212
Sum 654611.865 | 139002.227*

*This is not the sum of the individual sigmas.

Hy,is the sum of the means in Table 11-6. oy, is calculated using oy, = /avapaVZ,

where p is the functional correlation sub-matrix of WBS elements 2 through 9 in Figure

11-3.

wy, = 1.38u, = 164547.866, and py, = 654611.865 (from Table 11-6), so py is:

My = fy, + 1y, = 164547.866 + 654611.865 = 819159.732.

oy, = 68491.075, and oy, = 139002.227 (from Table 11-6), so oy is the square root of

the sum of the variances of V; and V/,:

oy = |(oy,) + (oy,) = 154960.1446.

From py and oy, we calculate the lognormal parameters Pyand Q,using Equations 4-5
and4-6: P, = 13.598, and @, = 0.189. The mean of the first term is computed by finding

the expectation of an exponentiated lognormal RV:

E[V%°] = 209577.473, and by multiplication with the constant, 0.1046, we get:

0.1046E[V°°] = 21918.22.
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The second term is simple to compute, as:
E[0.2898X;0%*¢10ep| = 0.2898E[X1,**|E[e10ep] = 0.2898E[X;0%*]

Since Xy, is triangularly distributed, with T(80,90,130), E[X;,°*] = 64340.222. The
second term is 0.2898E[64340.222] = 18645.796.

The third term reduces to the following, since there are no correlated terms:

E[Y?.,Y; D] = X7, E[Y;D] = X7, E[V,]E[D] = pp %:7_, py, = (52.823)(1406.704) =
74305.896

Summing these three terms gets us:

1.2 1109
E[YD] =E [0-1046 [ 12, X1OE(51)ﬁ] ] + E[0-2898X102'45108D] +E[X;-,Y; D],
and E[YD] = 21918.224 + 18645.796 + 74305.896 = 114869.916.

Now that all of the variables of the functional correlation have been obtained, the
correlation can be computed as:

E[YD] — pypp _ 114869.916 — (2166.995)(52.823)

= 0.0364
oy o) (443.915)(24.935)

Pyp =

The value py calculated from a 100,000-trial statistical simulation is 0.0366, which
indicates excellent agreement with the analytic result.

11.1.4.2 Joint PDF of Cost and Schedule
The joint PDF of cost and schedule is computed using a bivariate lognormal distribution.
The bivariate lognormal distribution is defined by the moments of the cost and schedule
distributions and the correlation between the two distributions Figure 11-7.

0.00004 |
plEy

0.00002 L

Figure 11-7 Joint PDF of Cost and Schedule
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11.2 Resource-Loaded Schedule Example

NASA provided a schedule network of a rocket engine program (Table 11-7 and Figure
11-8) which will be used to demonstrate the analytic method of uncertainty analysis on a
resource-loaded schedule. This example demonstrates the application of the analytic
method by providing a schedule risk analysis (including a probabilistic critical path
analysis), a cost risk analysis, and a joint cost and schedule risk analysis. In this section
we show how we developed the cost PDF, schedule PDF, joint cost and schedule PDF and
a probabilistic critical path analysis for the program.

Table 11-7 NASA Resource-Loaded Schedule Example

ID Task Duration Start Finish Predecessor Successor
1 Analysis File 840 days 10/1/2012 12/18/2015
2 Milestone Summary 840 days 10/1/2012 12/18/2015
3 Project ATP Odays 10/1/2012 10/1/2012 11,8SS
4 PDR Odays 4/26/2013 4/26/2013 12FF
5 CDR Odays 10/24/2014 10/24/2014 20FF
6 Rocket delivery 0days 12/18/2015 12/18/2015 32FF 9FF
7 Project Support Costs hammock task 840 days 10/1/2012 12/18/2015
8 Support Start 0days 10/1/2012 10/1/2012 3SS
9 Support Finish O0days 12/18/2015 12/18/2015 6FF
10 Preliminary Design 150 days 10/1/2012 4/26/2013
11  Requirements definition and documentation 100 days 10/1/2012 2/15/2013 3 12
12 Preliminary design activities 50 days 2/18/2013 4/26/2013 11 14,4FF
13 Detailed Design 390 days 4/29/2013 10/24/2014
14 Initial detailed design 80 days 4/29/2013 8/16/2013 12 15,16
15 Design GN&C 160 days 8/19/2013 3/28/2014 14 20
16  Trade studies and analysis 60 days 8/19/2013 11/8/2013 14 17,18,19,35
17  Design pyrotechnics 100 days 11/11/2013 3/28/2014 16,35 20
18  Design propulsion system 160 days 11/11/2013 6/20/2014 16,35 20
19  Design structures and mechanisms 120 days 11/11/2013 4/25/2014 16,35 20
20 Finalize integrated design 90 days 6/23/2014 10/24/2014 17,18,15,19 25,5FF,23,24
21 Development and Unit Testing 150 days 10/27/2014 5/22/2015
22 Fabricate rocket Components 120 days 10/27/2014 4/10/2015
23 Fabricate and unit test structure (including pyros) 120 days 10/27/2014 4/10/2015 20 27
24 Fabricate and unit test engine 120 days 10/27/2014 4/10/2015 20 27,34
25 Develop and test flight software for GN&C 150 days 10/27/2014 5/22/2015 20 29,36
26 Integration and Testing 170 days 4/13/2015 12/4/2015
27 Integrate rocket components 40 days 4/13/2015 6/5/2015 23,24,34 28,29
28  Testframe, fuel system and engine 35 days 6/8/2015 7/24/2015 27 30
29 Testguidance system 60 days 6/8/2015 8/28/2015 25,27,36 30
30 Final integration and testing 70 days 8/31/2015 12/4/2015 28,29 32
31 Delivery 10days 12/7/2015 12/18/2015
32 Delivery 10 days 12/7/2015 12/18/2015 30 6FF
33 Risk Register 400 days 11/8/2013 5/22/2015
34 Risk 1- Tl - Additional Purchase 0days 4/10/2015 4/10/2015 24 27
35  Risk 2- Duration - Additional Studies Required 0days 11/8/2013 11/8/2013 16 17,18,19
36  Risk 3- Tl and Duration - Delay from Additional SW Purchase 0 days 5/22/2015 5/22/2015 25 29

The nominal start and finish dates for the program are 10/1/2012 (defined by task 3, which
is the project’s ATP date), and 12/18/2015 (defined by tasks 6 and 32 which are the tasks
that define the delivery date), respectively. Using the nominal dates and durations, we get
a point estimate of schedule duration equal to 1173 calendar days. The milestone
summaries are tasks 2 through 6; the program support “hammock tasks” are tasks 7
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through 9 whose duration is defined by the ATP and delivery dates; the design,
development, integration, test and delivery tasks are tasks 10 through 32; and the program
risks are tasks 33 through 36. The Gantt chart for this schedule is shown in Figure 11-8.

1D |Task Name buration banuary 11 Duly 21 February 1 Jugust 11 February 21 I 1 March1 I 21
8/26 | 11/25 | 2/2a | 5/26 | 8/25 [11/24 | 2/23 | 5/25 | 8/2a [ 11/23 | 2/22 | 5724 | 8/23 [ 11722 | 2/21 | 5722 | 8/21 [ 1120 |

1 Analysis File 840 days| @ ad

2 Milestone Summary 840 days| © .

3 Project ATP 0 days| r9-10/1

4 PDR 0 days 4/26

5 CDR 0 days 9410/24

6 Rocket delivery 0 days #412/18

7 Project Support Costs hammock task 840 days| | & v

8 Support Start 0 days 10/1

9 Support Finish 0 days $412/18

10 Preliminary Design 150 days —;r== 4/26

11 Requirements definition and documentation 100 days ==l

12 Preliminary design activities 50 days

13 Detailed Design 390 days v P [10/24

14 Initial detailed design 80 days
15 Design GN&C 160 days

16 Trade studies and analysis 60 days
17 Design pyrotechnics 100 days
18 Design propulsion system 160 days
19 Design structures and mechanisms 120 days {i

20 Finalize integrated design 90 days [

21 Development and Unit Testing 150 days ey 5/22

22 Fabricate rocket Components 120 days Y

23 Fabricate and unit test structure (including 120 days

24 Fabricate and unit test engine 120 days

25 Develop and test flight software for GN&C 150 days

26 Integration and Testing 170 days v P 12/4
27 Integrate rocket components 40 days =)

28 Test frame, fuel system and engine 35 days

29 Test guidance system 60 days

30 Final integration and testing 70 days

31 Delivery 10 days 12/18
32 Delivery 10 days

33 | Risk Register 400 days o

34 Risk 1 - TI - Additional Purchase 0 days 34/ o

35 Risk 2 - Duration - Additional Studies Required 0 days Sy

36 Risk 3 - Tl and Duration - Delay from Additional So. 0 days 5/22

Figure 11-8 NASA Resource-Loaded Schedule Example Gantt Chart

The nominal critical path summary tasks include “Preliminary Design” (task 10), “Detailed
Design” (task 13), “Development and Unit Testing” (task 21), “Integration and Testing”
(task 26), “Delivery” (task 31), and “Risk Register” (schedule-related risks summarized by
task 33).

11.2.1 Schedule Probability Distribution
The schedule distribution will be defined by the distributions of those tasks on the
probabilistic critical paths (i.e., tasks 10 through 36). We will define the probabilistic
finish dates of these tasks using Equation 11-1.

Finish; = Start; + Duration; where 11-1
i is the task number

11.2.1.1 Input Probability Distributions
The ATP date is defined as a discrete date. The remaining start and finish dates for all of
the tasks are RVs because each of the task durations are defined as RVs with parameters
defined in Table 11-8. Two types of PDFs are shown in Table 11-8. The first type of PDF
is used to replace the nominal duration with a RV and are defined as uniform (U),
triangular (T), normal (N) or lognormal (L) PDFs. The second type of PDF is an
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uncertainty used to multiply the nominal duration by a PDF. These are identified with the
same PDF shape symbols as the first (e.g., U, T, N, L), but have a multiplication symbol
next to the distribution’s parameters (e.g., U *(90,110)), which are represented as
percentile values.

All of the PDFs are uncorrelated with respect to each other except for tasks 23, 24 and 25
(i.e., the development duration “DEVDUR” tasks). These tasks are correlated with each
other with p = 0.75.

Table 11-8 Duration Probability Distributions

Task ID Task Description PDF

7 Project Support Costs hammaock task

10 Preliminary Design

11 Requirements definition and documentation T * (95,100,110)

12 Preliminary design activities T % (95,100,110)

13 Detailed Design

14 Initial detailed design T % (90,100,120)

15 Design GN&C T % (90,100,120)

16 Trade studies and analysis T *(90,100,120)

17 Design pyrotechnics T % (90,100,120)

18 Design propulsion system T *(90,100,120)

19 Design structures and mechanisms T % (90,100,120)

20 Finalize integrated design T % (90,100,120)

21 Development and Unit Testing

22 Fabricate Rocket Components

23 Fabricate and unit test structure (including pyros) U = (80,110);
p(DEVDUR = 0.75)

24 Fabricate and unit test engine U = (80,110);
p(DEVDUR = 0.75)

25 Develop and test flight software for GN&C L * (105,5);
p(DEVDUR = 0.75)

26 Integration and Testing

27 Integrate rocket components N % (100,15)

28 Test frame, fuel system and engine T = (80,100,130)

29 Test guidance system T *(80,100,130)

30 Final integration and testing T(55,70,91)

31 Delivery

32 Delivery N(10,3)

33 Risk Register

34 Risk 1 - TI - Additional Purchase R(p,D)(0.30,0)

35 Risk 2 - Duration - Additional Studies Required R(p,D)(0.15,DU(15,25,40))

36 Risk 3 - Tl and Duration - Delay from Additional Software Purchase R(p,D)(0.3,T(20,25,30))
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11.2.1.2 Calculating the Schedule Probability Distributions
Using the discrete start date of 10/01/2012, the predecessor/successor relationships defined
in Table 11-7 and the probabilistic durations of the tasks defined in Table 11-8, we can
find the PDF of the finish dates of the resource-loaded example schedule.

Only one obstacle lies in our way — the issue of whether to compute the statistics in
working days or calendar days. For simplicity, we will perform computations in working
days - denoting durations, start dates and finish dates with an accent (e.g., finish';) - then
when specific dates are required, convert them to calendar days using the conversion factor
in Equation 3-8.

An example calculation of the duration statistics follows: Since Duration’,; is a PDF
defined by 100wd * T(95,100,110)/100, ppyration,, = 101.67 wd and opyrations,, =
3.12wd using the definitions of the mean and standard deviation of a triangular PDF from
Section 16.1.1. We repeat these calculations to compute the duration statistics (in wd) for
all non-summary tasks shown in Table 11-9.

The discrete risk duration calculations for tasks 34-36 rely on the technique described in
Section 9. There are two risks, R, and R, with which we are currently concerned. R, is
defined as a discrete risk, R,(0.15, D(15,25,40)), with probability of occurrence of 15%
and equiprobable consequences of 15, 25, and 40 wd, respectively. The possible outcomes
and associated probabilities of the states of R, are:

Owd ,p=0385
15wd ,p=0.05
25wd ,p =0.05
40wd ,p = 0.05

. ! —
Duration', =

The moments of the duration of R, are calculated using Equations 9-4 and 9-7.

D,+Dy+D 15+25+40
;uDuration/RZ =p (%) =0.15 (T) = 4wd, and

2 P w3 2
aDuratioanz = (1 - p) (DO - .uDuratioanz) + EZizl (Di - ﬂDuratioanz)

Oourattonsy, = (1= 015)(0 = )2 +22[(15 — 4)2 + (25 — 4)2 + (40 — 4)?

o, onrm. =+ (0.85)(16) + 0.05[(11)2 + (21)? + (36)?] = 10.32wd.
Duration/g, \/( )( ) [( ) ( ) ( )]

Task 36 (R3)is defined as a discrete risk, R5(0.30,7(20,25,30)), with probability of
occurrence of 30% and a probabilistic impact, D, defined by a triangular distribution with
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parameters 20, 25 and 30 wd, respectively. The mean and standard deviation of the
impact’s triangular PDF, D = T(20,25,30), are:

¥3 . D; 20+425+30
= 131 L= 2 = 25wd, and

Up

= 2.04wd.

_\/Z?=1(Di—ﬂp)2_ (20-25)2+(25-25)2+(30—25)2
o0 12 B 12

The moments of the duration of R are calculated using Equations 9-4 and 9-7

Hpurationrg; = PHp = 0.30(25) = 7.50wd, and

UDurationng = J(l - p) (DO - ﬂDurationlm)z +p [O-D2 + 2i3=1(Di - ﬂDurationlm)z]

Opurationgz =
V(1 =0.30)(0 — 7.5)2 + 0.3[(2.04)% + (20 — 7.5)2 + (25 — 7.5)2 + (30 — 7.5)2] =
11.51wd.

Table 11-9 Duration Probability Distributions in Workdays

Task ID Duration, wd PDF, &; K, [
11 100 T % (95,100,110) 101.67 3.12
12 50 T % (95,100,110) 50.83 1.56
14 80 T % (90,100,120) 82.67 4.99
15 160 T % (90,100,120) 165.33 9.98
16 60 T % (90,100,120) 62.00 3.74
17 100 T % (90,100,120) 103.33 6.24
18 160 T % (90,100,120) 165.33 9.98
19 120 T % (90,100,120) 124.00 7.48
20 90 T % (90,100,120) 93.00 5.61
23 120 U = (80,110) 114.00 10.39
24 120 U * (80,110) 114.00 10.39
25 150 L * (105,5) 157.5 7.50
27 40 N % (100,15) 40 6.00
28 35 T % (80,100,130) 36.17 3.60
29 60 T % (80,100,130) 62.00 6.16
30 70 T(55,70,91) 72.00 7.38
32 10 N(10,3) 10.00 3.00
34 0 R(p,D)(0.30,0) 0.00 0.00
35 0 R(p,D)(0.15,DU(15,25,40)) 4.00 10.32
36 0 R(p,D)(0.3,T(20,25,30)) 7.50 11.51
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In the next series of calculations, we compute the means and standard deviations of start

dates (in wd) and finish dates (in wd) for these tasks.

11.2.1.3 Preliminary Design

The “Preliminary Design” summary task (task 10) consists to two lowest-level tasks (tasks
11 and 12) that are arranged serially. The computations for the task durations, start dates

and finish dates are:

Start,, = Start,; = Start; = ATP date of 10/01/12

Finish';, = Finish';, by definition because task 10 is a summary task

Duration'y, = Finish'y, — Start,, = Duration’y; + Duration’;, , because tasks 11

and 12 are serial tasks
Finish',, = Start,, + Duration’;, inwd

From Table 11-9 we have:

U purationr,, = 101.67wd and o pyrations,, = 3.12wd
Upurationr,, = 50.83wd and opyrations,, = 1.56wd.

So, Finish'y, = Start,, + Duration’,, = Finish,; + Duration',, = Start; +

Duration',; + Duration’;,, in wd
So Duration',, = Duration',; + Duration’,,

Therefore,

K purationr, = M purationry; T K purationry, = 152.50wd, and

— 2 2 —
aDurationllz - \/O-Durationlll + O-Durationllz = 3.49wd.

Using these calculations, we get the results in Table 11-10.

Table 11-10 Workday Results for Preliminary Design

Task ID Kpuration' | ODurations K starts O starts K Finish OFinishs
10 152.50 3.49 10/01/12 0| 03/02/13 3.49
11 101.67 3.12 10/01/12 0| 01/10/13 3.12
12 50.83 1.56 01/10/13 3.12 | 03/02/13 3.49

11.2.1.4 Detailed Design

The “Detailed Design” summary task (task 13) consists of seven lowest-level tasks (tasks
14 through 20) arranged in a tree structure. The nominal durations of tasks 14 through 20
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have the same multiplicative triangular PDF (defined by Duration’ * T(90,100,120)), with
mean of 1.033 and a standard deviation of 0.062.

Task 14 has one predecessor, task 12, so its start and finish dates are defined as:
Start',, = Finish'y, , and Finish',, = Finish',,+Duration’,
From Table 11-9:

Upurations,, = 80 * 1.033 = 82.67wd, and
Opurationr,, = 80 * 0.062 = 4.99wd.

Table 11-11 Workday Results for Detailed Design Task 14

Task ID Hpuration’ | ODurations H startr O Start H Finishr O Finishr
14 82.67 4.99 03/02/13 3.49 05/24/13 6.09

Task 15 has a single predecessor, task 14, and we compute its start and finish dates as:
Start',s = Finish'y, , and Finish';s = Start';s+Duration’;s
From Table 11-9:

U purationr,; = 160 * 1.033 = 165.33wd, and
O purations,s = 160 % 0.062 = 9.98wd.

Task 16 also has a single predecessor (task 14), and its start and finish dates are:
Start',s = Finish'y, , and Finish',, = Finish',,+Duration’,,
From Table 11-9:

Upurationr,, = 60 * 1.033 = 62.00wd, and
Opurations,, = 60 * 0.062 = 3.74wd.

Tasks 17 through 19 share risk R, as a common predecessor, and R,’s predecessor is task
16. We must first compute the moments of R, in order to calculate the start dates,
durations and end dates of tasks 17 through 19.

So, Start'g, = Finish';¢ and Finish'g, = Finish';s+Duration’s, and
From Table 11-9:

Mpurationrg, = 4wd and O purationig, = 10.32wd.
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Since Start'y; = Start';g = Start'iq = Finish'g,, and
Finish'y; = Finish'g,+Duration'y, , Finish'g = Finish'p +Duration’;g , and

Finish' = Finish'p,+Duration’;g , we need to compute the moments of the durations
of tasks 17 through 19 to compute their finish dates.

From Table 11-9:

H purationr, = 103.33wd, O purationry; = 6.24wd,
H purationr;g = 165.33wd, O purationr,g = 9.98wd,
U purationry, = 124.00wd, and o pyrations,, = 7-48wd.

The statistics for the durations, start dates and end dates for tasks 15 through 19 (including
task 36) are shown in Table 11-12.

Table 11-12 Workday Results for Detailed Design Tasks 15— 19 and 35

Task ID Hpuration: | ODurations H startr O Startr H Finishr O Finishs
15 165.33 9.98 05/24/13 6.09 11/05/13 11.69
16 62.00 3.74 05/24/13 6.09 | 07/25/13 7.14
35(R,) 4.00 10.32 07/25/13 7.14 | 07/29/13 12.55
17 103.33 6.24 07/29/13 12.55 11/09/13 14.02
18 165.33 9.98 07/29/13 12.55 01/10/14 16.03
19 124.00 7.48 07/29/13 12.55 11/30/13 14.61

Task 20 has four predecessor tasks, so its start date is defined by the maximum finish date
of its predecessors (i.e., tasks 15, 17, 18 and 19). This is expressed as:

Start',o = Max(Finish'ys, Finish',,, Finish' g, Finish',q)

Nearly all of the duration PDFs used in this example schedule are right skewed, so a
lognormal distribution is assumed for all of the start and finish date PDFs. Since the
distributions of the finish dates of these tasks approximate lognormal distributions, the
equations for the moments of the maximum of lognormal distributions (Equations 10-8
through 10-10) are used to find the finish date statistics for tasks 15, 17, 18 and 19 and thus
the start date statistics for task 20. The latest, or maximum, finish date of the four tasks
can be calculated in pairs, so three comparisons will be made, and the following three
intermediate distributions will be formed: A = max(18,19), B = max(17,A), and
C = max(15,B).

We can calculate the mean of the maximum of two lognormal distributions using Equation
10-8, which is:
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— 2_ _ 2_
[X] = 10 ® [(P1 Pz)"‘(? PQ1Q2)] + Uy ® [(Pz P1)+(Q92 PQ1Q2)] ’

and from Equation 10-9, which is:

P;—P Py—P
E[X2] = (o7 + i) (222) + (oF + ud)o ((52)

where = \/Q? + Q2 — 2pQ,Q, ,and p = @ln I1 + P12 (\/[eof —1][e% - 1])]

These computations require knowledge of the statistics of the finish dates of pairs of
tasks: uy, Uy, 01, 03, P1, Py, Q1,Q2,0,p1,,and p.  Table 11-13 provides the statistics
used in the calculation of the maximum finish dates of tasks 15, 17, 18 and 19.

The finish dates of tasks 15 through 19 are correlated due to common predecessor-
successor relationships. Using Equation 8-8, we can determine the pairwise correlation
between these tasks or the maximums of pairs of tasks.

Table 11-13 Statistics for Maximum Finish Dates of Tasks 15, 17, 18 and 19

Statistic A=max(18,19) B=max(17,A) C=max(15,B)
Wy 01/10/14 11/09/13 11/05/13
Uy 11/30/13 01/10/14 01/10/14
0y 16.03 14.02 11.69
o, 14.61 16.03 16.03
Py 10.6370 10.6356 10.6355
P, 10.6361 10.6370 10.6370
Q4 0.000385 0.000337 0.000281
Q, 0.000351 0.000385 0.000385
P12 0.67236 0.70115 0.14383

p 0.67236 0.70115 0.14383
Umax 01/10/14 01/10/14 01/10/14
Omax 16.03 16.03 16.03

*Note due to the small values of Q;, that p; , and p are identical

Tasks 18 and 19 share a common predecessor, the risk task (task 35, or R,), so their
correlation is:

(12.55)2
OFinish11gOFinishi1q  (16.03)(14.61)

2
OFinishig,

= 0.67236

P1g19 =

Task 17 shares R, as a common predecessor with the maximum of task A (the maximum
of tasks 18 and 19), so the correlation between task 17 and task A is:
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(12.55)2
OFinishi,;OFinishr, ~ (14.02)(16.03)

2
OFinishig,

= 0.70104

P17.4 =

Finally, task 15 shares task 14 as a common predecessor with task B (the maximum of
tasks 17 and A), so task 15’s correlation to task B is:

OFinishr1s” (6.09)2
OFinishi;sOFinishig®  (11.69)(16.03)

= 0.19766

P15 =

Task 20’s predecessor is task C, so its finish date is defined as:
Finish',, = Finish'+Duration’,,
From Table 11-9:

K purationsy, = 90 * 1.033 = 93.00wd, and
O purations,, = 90 * 0.062 = 5.61wd.

The start date, finish date and duration results for task 20 are shown in Table 11-14.

Table 11-14 Workday Results for Detailed Design Task 20

Task ID
20

OFinish’'
16.99

K Finish’
04/13/14

O Start’'
16.03

U start'
01/10/14

O Duration’

5.61

KUDpuration’

93.00

11.2.1.5 Development and Unit Testing
The “Development and Unit Testing” summary task (task 21) consists of a summary task
(task 22) and three lowest-level tasks (tasks 23 through 25) that are arranged in a parallel
structure. Each of the tasks has a common predecessor, task 20 and the durations of tasks
23, 24 and 25 are correlated to each other with p = 0.75. From Table 11-9:

Upurationr,s = 114.00wd, Opurationryz — 10.39wd,
Hpurationr,, = 114.00wd, Opurationry, = 10.39wd,
Kpurationr,s = 157.50wd, and opyrations,, = 7-50wd.

Table 11-15 shows the duration, start and finish date statistics for the lowest-level tasks for
“Development and Unit Testing”.

Table 11-15 Workday Results for Development and Unit Testing Tasks

Task ID Kpuration' | ODurations K starts O starts K Finish OFinishs
23 114.00 10.39 04/13/14 16.98 | 08/05/14 19.91
24 114.00 10.39 04/13/14 16.98 | 08/05/14 19.91
25 157.5 7.50 04/13/14 16.98 | 09/18/14 18.57
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The fact that the durations of these tasks are correlated does not matter at this particular
point since they are not serially arranged and merge to form a predecessor in a different
summary task. This will become important when computing the maximum finish dates of
these tasks and their respective Cls.

11.2.1.6 Integration and Testing
The “Integration and Testing” summary task (task 26) consists of four lowest-level tasks
(27 through 30) arranged in a tree structure.

Task 27 has three predecessors, tasks 23, 24 and 34, and the last is risk R,. Since R, has
zero duration, task 27 actually has only two predecessors, tasks 23 and 24. This means its
start date is defined as maximum of the finish of tasks 23 and 24. Both tasks 23 and 24
have the same finish statistics but their durations are correlated with p = 0.75.

Start',; = Max(Finish',3, Finish',,)
Finish',, = Start',; + Duration',,
From Table 11-9, ppyrations,, = 40.00wd and opyrations,, = 6.00wd.

Since the maximum of Finish',; and Finish',, depends on the correlation between the
durations of tasks 23 and 24 as well as the functional correlation due to their common
predecessor (task 2), we will use Equation 8-8 to determine pp,,. r.,,then we can calculate

the maximum finish date statistics using Equations 10-8 through 10-10.

_ O-FIZOZ + pD’23’D’24O-D’230-D'24 _ (1699)2 + (075)(1039)(1039)

- - = 0.9319
pF 23,F24 O—F’23O-F’24 (1991)(1991)

The maximum finish date statistics are:
M(Finish123,FiniShlz4) = 08/08/147 and O-(FiTliSh’23,FiTliSh’24_) = 19'70Wd
Task 27’s statistics are provided in Table 11-16.

Table 11-16 Workday Results for Integration and Testing Task 27

Task ID Hpuration' | ODurations K startr O start H Finishs O Finishr
27 40 6.00 08/08/14 19.70 09/17/14 20.59

Task 28 has a single predecessor (task 27), so Finish',, = Start',g. From Table 11-9:

Upuration,s = 36.17wd and opyrations,, = 3.60wd.

Task 28’s statistics are provided in Table 11-17.
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Table 11-17 Workday Results for Integration and Testing Task 28

Task ID Hpurations
28 36.17

O Finishr
20.90

H Finishs
10/23/14

O Startr
20.59

M start
09/17/14

O Duration’

3.60

The “Development and Unit Testing” task (task 29), has two predecessors, tasks 27 and 36
(the latter is risk R3). Tasks 27 and 36 branch from task 20 with multiple intermediate
tasks, but since they share task 20 as a common predecessor, their finish dates will be
functionally correlated. Before we can compute task 29’s start date, we must compute the
finish date statistics for task 36. From Table 11-9:

K purationigs = 7-50wd and o pyrationg, = 11.51wd .

The predecessor-successor and start-finish relationships (Start’z; = Finish',s and
Finish'gs = Start'gs+Duration’gs) allow us to compute the schedule statistics for task
36 (R3) in Table 11-18.

Table 11-18 Workday Results for Risk R3 (Task 36)

Task ID Hpuration:
36 7.50

O Finishr
21.85

H Finishs
09/25/14

O start
18.57

K startr
09/18/14

O purationr

11.51

Since tasks 27 and 36 share a common predecessor (task 20), they are functionally
correlated, so we will use the now familiar Equation 8-8 to determine pg,, f,... Since

Pp,, s, = 0.75, Wwe have:

 OFiye? F PD1yyDrsg 0Dy, 0prss  (16.99)% + (0.75)(6.00)(11.51)

PFra7Fise = (20.59)(21.85) = 0.7565

OF1,,0F15,
The maximum finish date statistics using Equations 10-8 through 10-10 are
U (Finishryy Finishisg) = 09/28/14, and o(pinisniy Finishi,,) = 20.78wd.
From Table 11-9:
U purationr,, = 62.00wd and o pyrations,, = 6.16wd.
Task 29’s statistics are provided in Table 11-19.

Table 11-19 Workday Results for Integration and Testing Task 29

Task ID

Hpuration:

O Durationr

H startr

O start

H Finishr

O Finishr

29

62.00

6.16

09/28/14

20.78

11/29/14

21.68
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The last “Integration and Testing” task is task 30. It has two predecessors, tasks 28 and 29.
Since tasks 28 and 29 share task 27 as a common predecessor, they will be functionally
correlated, and we will use Equation 8-8 to calculate it. We will assume pp,,_p,, = 0.

Op,?  (20.59)2

= = 0.9356
Opr, Opr,,  (20.90)(21.68)

PDryg D19 =

Equations 10-8 through 10-10 provide the following results
U (Finishipg Finishipo) = 11/30/14, and 0(pinisni g Finishi,e) = 21.68wd.
From Table 11-9:
U purationrs, = 72.00wd and o pyrations,, = 7-38wd.

Table 11-20 summarizes the duration, start and finish date statistics for the lowest-level
tasks for “Integration and Testing”.

Table 11-20 Workday Results for Integration and Testing Tasks

Task ID | Upurations | Opurations | M startr O start M Finishr | OFinish/
27 40 6.00 08/08/14 19.70 09/17/14 20.59
28 36.17 3.60 09/17/14 20.59 10/23/14 20.90
29 62.00 6.16 09/28/14 20.78 11/29/14 21.68
30 72.00 7.38 11/30/14 21.68 02/10/15 22.90

11.2.1.7 Delivery
The “Delivery” summary task (task 31) consists of a single lowest-level task (task 32).
Task 32 has a single predecessor (task 30). From Table 11-9:

U purationrs, = 10.00wd, and o pyrations,, = 3.00wd.
The statistics for task 32 are shown in Table 11-21.

Table 11-21 Workday Results for Delivery Task 32

Task ID Hpuration:
32 10.00

O Finishr
23.10

H Finishr
02/20/15

O start
22.90

H startr
02/10/15

O Durationr

3.00

11.2.1.8 Criticality Index
As described in Section 3.3.3, the CI is the probability that a particular task is on the
critical path. Since tasks 30 and 32 are serial and always define the finish date, they are
always on the critical path so their Cls are 100%. Tasks 11, 12 and 14 are serial tasks and
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are by definition on the critical path so their Cls are 100% as well. The tasks succeeding
task 14 create a branch in the schedule network, so we must evaluate their CI up to the
point of the start of task 20. These branches are:

1) Task 15

2) Tasks 16, 35 and 17
3) Tasks 16, 35 and 18
4) Tasks 16, 35 and 19

The expression for the duration between task 15 and task 19 is:
Di1519] = max(D;s, D1 + D35 + D17, D16 + D35 + Dig, D1g + D35 + Dyg)
The Cls of these tasks, using Equation 3-9, are:

Clis = P(F'15 > Fliax17,1819))
Clig =1—Clye

Clys = 1 — Cly

Cli; = P(F'17 > F'imax(18,19))
Clig = P(F'ig > F'imax(17,19))
Clig = P(F'y9 > F'ax17,18))

From Section 3.3.3, we can calculate CI, < using the moments of the difference between the
PDFs of F'ax17,1819) @nd F';s then finding the integral of the PDF of the difference

from- o0 t0 0.

Clis = P(F'15 > Flmax(17,18,19)) = P(F'max(17,1819) — F'15 < 0)

=01/10/14, and o = 16.03wd from Table 11-13.

!
HE max(17,18,19) max(17,18,19)

ppr,, = 11/05/13,and opr . = 11.69 wd from Table 11-12
p = 0.14383 from Table 11-13.

The moments of the difference of the PDFs are:

op = PF maxaras10) — HF'1s = 66wd, and

— 2 2 =
6o = \/UF’max(17,18,19) T OR s 2p0F’max(17,1s,19)0F'15 = 17.875wd.

Since Sy is positive and o/ we expect the difference distribution to be

< O-F’ f
max(17,18,19)
right skewed. Using the knowledge that 6u > 350 we can expect all but a negligible
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amount of area of the distribution lies to the right of the origin, so Cl;5; = 0. Since this is
the case, Cl;, = 1, and Cl;5 = 1 since it is a direct successor to task 16.

ClL; = P(F’17 > F,max(18,19)) = P(F'max(1g,19) — F'17 < 0)

=01/10/14, and opr = 16.03wd from Table 11-13.

'uF,max(18,19) ax(18,19)

per, = 11/09/13,and opr = 14.02wd from Table 11-12
p = 0.70115 from Table 11-13.

The moments of the difference of the PDFs are:

Sy = ppr — Mg, = 62wd., and

max(18,19)

— 2 2 _ =
6o = \/UF’max(18,19) T O s 2p0—F,max(18,19)0-F’15 =11.763 wd.

Again, 6u is positive, and opr_, so we expect the difference distribution

< O-F’ f
max(17,18,19)
to be right skewed. du > 360, in this case, so we can again expect CI;, = 0.

Clig = P(F,18 > F’max(17,19)) = P(F'max(17,19) — F'18 < 0)

To find Cl;g we require values for the following parameters: HE acinasy' @

’
F max(18,19)’

B! g OF and p (which is the correlation between F’ 417,19y @and F'yg).

We again use Equation 10-8 and Equation 10-9 to calculate the mean of F'y,,4(17,19) Which
result in:

HE axirasy — 11/30/13, and OF maxsns) — 14.56 wd

tpr,, = 01/10/14, and opr . = 16.03wd from Table 11-12.
The correlation coefficient is calculated using the knowledge that these distributions rely
on a common finish date for task 20 whose standard deviation is:

o, = 16.99 wd from Table 11-12

OFinishizg>  _  (16.99)2

T (14.56)(16.03) = 070115

SO, p17,19 = p
)2l O'FI
max(17,19) 18

The moments of the difference of the PDFs are:

o = HF maxza9) ~ HF'1g = —41.27wd, and

— 2 2 _ =
50 - \/GF,max(17,19) + O—F,18 2p0—F’max(17,19)O-Flls =12.411 wd.

The area of this distribution is all less than zero, so Cl;g = 1.0.
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Task 20 is a serial task and has a Cl of 100%, but it has a complex set of branches
succeeding it. The equivalent duration of the tasks between tasks 20 and 30 is the
difference between the start date of task 30 and the finish date of task 20. This duration
represents the maximum duration of tasks 23 through 29, Dy3 ,¢;, Which is equal to:

Di33201 = max{max[max(D';3,D'34) + D';7,D'35 + D'36] + D'9,max (D53, D'54) +
D'y; + D'58}

Tasks 28 and 29 define the start of task 30, so

6128 == P(F’28 > F,29), and
Clzg =1- 6128'

Clyg = P(F',g > F',9) = P(F',5 — F',, < 0), which results in:

Hp,, = 10/23/14, and ofr,, = 20.89wd from Table 11-20

ter,, = 11/29/14, and o, = 21.68wd from Table 11-20

Since tasks 28 and 29 share task 20 as a common predecessor, the correlation between their

finish dates is defined as:

OFinishie> _  (16.99)2

TRl OF 50 (20.69)(21.68)

The moments of the difference between the two PDFs are:
ou = upr,, — e, = 36.6wd, and

p28,29 = = 06364‘0

b0 = JUF’Zgz + 0pr 2 — 2p0p, 0p,, = 18.164wd.

Since p,g 59 is Not large enough to model the difference between these PDFs as a normal
distribution, we will treat it as a lognormal distribution. The lognormal parameters P and
Q for the difference are P = 3.4915 and Q = 0.4687. Substituting P and Q into the
standard normal distribution and evaluating the integral of the difference of the PDFs from
—oo to 0 we get zero, so Cl,g = 0. It becomes clear that task 29 is on the critical path with
Cl,o = 1 and the expression for the duration from task 23 to task 29 reduces to:

D[23,29] = max[max(D,3, Dz4) + D37, Dy5 + D3g] + Dyg

This expression shows we must calculate Cl;,4 , a discrete risk. R; is defined as R(p, D) =
(0.3,7(20,25,30) )wd, meaning there is a 30% probability that there will be an additional
duration defined by T'(20,25,30)wd.

The duration statistics for task 36 are:

25.00 ,if Rs,p =0.3

_{ 204 ,if Ry,p =03
Hp'ss 1000 ,ifR5,1—p=07"

and opry = {0.00 if Ry, 1-p=07
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The finish date statistics for task 36 are:

18.67 ,if R;,p =03
1856 ,ifRs,1—p =07

Hp'yo =

{10/13/14 JifRy,p=03 ~ {
09/18/14 ,if Rz, 1—p=0.7"" 7F'ss =
Clzg = P(F'36 > F'p7) = P(F'p7 — F'36 < 0)

Ug',, = 09/17/14,and o, = 20.59wd from Table 11-20

Tasks 27 and 36 share task 20 as a common predecessor, however

Finish',; = Finish',y + Max(D'55,D',,) + D'57,

Finish' gy = Finish',q+D',5+D'g5, and

P2324 = P2325 = P2a25 = 0.75,

so there is additional correlation for which we must account when computing p;7 3.
D'y =Max(D',3,D',,) + D',; ,and D'y = D'y + D'

Opi ol 2+p ! I Opr Opt . . A
2736 = —t 2 D:'D 5B 24 2B which will is calculated separately for each possible
F'379F 36

outcome. We will assume pjr, pr. = 0.75 and compute the standard deviations, o,/ , and

Opig-

OMax(Dr,s,D1,,) = 10.23wd, using Equation 10-9.

opr, = J [Omaxrrapran] + [00r,,]" = T10.23]2 + [6.00]7 = 11.86wd,

J[7.50]2 + [2.04]2 = 7.77wd ,if Ry,p = 0.3
J[7.50]2 + [0]2 = 7.50wd  ,if R;,1—p =0.7

oo = \/[JDIZS]Z + [0p1g, ] = {

p _ UFiniShIZOZ+pD’A,D’BaD’AoD,B _ {0'90510 ) lf R3 Ip = 0'3

0.90507 ,if Ry, 1—p=0.7

GF’27UF’36
The moments of the difference of the PDFs are

Sy = . {—25.57Wd Jif R, p =103
:u_.uF’27 :uF’36 - —0.57wd ,ifR_3,1—p =0.7
8.752wd ,if R;,p =0.3
6o = \/GF'272 + UF'gsz - 2po—F’27O-F’36 = {8.753Wd ,ifR_g, 1-p=07
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In the case where R occurs, we will assume the PDF of the difference is approximately
normal since the two distributions are so highly correlated (o = 0.90510). Given this, the
integral of the PDF of the difference from-co to 0 is 0.9983, which is almost unity. In the
case where R; does not occur, we will again assume a normal distribution for the PDF of
the difference. The resulting integral of the PDF of the difference from- oo to 0 is 0.5259.
Combining these two Cls, we get a 30% probability that Clz¢is 0.9983 and a 70%
probability that Cl54 is 0.5259. These probabilities result in

Cl3¢ = 0.3(0.99830) + 0.7(0.5259) = 0.6676 , 50 CI,; =1 —0.6676 = 0.3324

The relationship for the duration D,3 ,4) can be rewritten as

max(max(D23, D24) + D27, D25 + D36) ,p = 0.3324
Dp23,20) =

Dys + D36 ,(1—p= 0.6676} + Dz

Since task 25 belongs to the same path as (and is a single predecessor to) task 36, then
Clys = 0.6676.

The remaining two tasks, tasks 23 and 24, have identical distributions as shown in Table
11-15, so they have an equal probability of being on the critical path. Given this we can
multiply the CI of their path (CI1=0.3324) by 0.5 to equally divide their probabilities of
being on the critical path.

11.2.1.9 Schedule Risk Summary
Table 11-22 summarizes the duration statistics (as well as the start and finish dates in
workdays) and the Cls calculated in the previous section. The durations, start and finish
dates are converted to calendar dates in Table 11-23 to display the actual duration statistics
in days as well as the calendar days representing the statistics of the start and finish dates

of the tasks.
Table 11-22 Workday Results for Schedule Risk Analysis
TaskID | Upurations | Opurations | M starer O starts HFinishy | OFinishs Cl
10 152.50 3.49 | 10/01/12 0.00 | 03/02/13 3.49 100%
11 101.67 3.12 | 10/01/12 0.00 | 01/10/13 3.12 100%
12 50.83 1.56 | 01/10/13 3.12 | 03/02/13 3.49 100%
14 82.67 4.99 | 03/02/13 3.49 | 05/24/13 6.09 100%
15 165.33 9.98 | 05/24/13 6.09 | 11/05/13 11.69 0%
16 62.00 3.74 | 05/24/13 6.09 | 07/25/13 7.14 100%
17 103.33 6.24 | 07/29/13 12.55 | 11/09/13 14.02 0%
18 165.33 9.98 | 07/29/13 12.55 | 01/10/14 16.03 100%
19 124.00 7.48 | 07/29/13 12.55 | 11/30/13 14.61 0%
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Task ID | Upurations | Oburations | M startr O Startr M Finishr | OFinish cl
20 93.00 5.61 01/10/14 16.03 04/13/14 16.99 100%
23 114.00 10.39 04/13/14 16.98 08/05/14 19.91 16.62%
24 114.00 10.39 04/13/14 16.98 08/05/14 19.91 16.62%
25 157.50 7.50 04/13/14 16.98 09/18/14 18.57 66.76%
27 40.00 6.00 08/08/14 19.70 09/17/14 20.59 33.24%
28 36.17 3.60 09/17/14 20.59 10/23/14 20.90 0%
29 62.00 6.16 09/28/14 20.78 11/29/14 21.68 100%
30 72.00 7.38 11/30/14 21.68 02/10/15 22.90 100%
32 10.00 3.00 02/10/15 22.90 02/20/15 23.10 100%
34 0.00 0.00 08/05/14 19.91 08/05/14 19.91 0%
35 4.00 10.32 07/25/13 7.14 07/29/13 12.55 100%
36 7.50 11.51 09/18/14 18.57 09/25/14 21.85 66.76%

Table 11-23 Calendar Day Results for Schedule Risk Analysis

Task ID | Upuration | ODuration| M Start O Start K Finish OFinish Cl
10 213.50 4.88 | 10/01/12 0.00 | 05/02/13 4.88 100%
11 142.33 437 | 10/01/12 0| 02/20/13 4.37 100%
12 71.17 2.18 | 02/20/13 4.37 | 05/02/13 4.88 100%
14 115.73 6.98 | 05/02/13 4.88 | 08/26/13 8.52 100%
15 231.47 13.97 | 08/26/13 8.52 | 04/14/14 16.36 0%
16 86.80 5.24 | 08/26/13 8.52 | 11/21/13 10.00 100%
17 144.67 8.73 | 11/26/13 17.57 | 04/20/14 19.62 0%
18 231.47 13.97 | 11/26/13 17.57 | 07/16/14 22.45 100%
19 173.60 10.48 | 11/26/13 17.57 | 05/19/14 20.46 0%
20 130.20 7.86 | 07/16/14 22.44 | 11/23/14 23.78 100%

23 159.60 14.55 | 11/23/14 23.78 | 05/01/15 27.88 | 16.62%
24 159.60 14.55 | 11/23/14 23.78 | 05/01/15 27.88 | 16.62%
25 220.50 10.50 | 11/23/14 23.78 | 07/01/15 25.99 | 66.76%

27 56.00 8.40 | 05/06/15 27.58 | 07/01/15 28.83 | 33.24%
28 50.63 5.03 | 07/01/15 28.83 | 08/20/15 29.26 0%
29 86.80 8.63 | 07/16/15 29.10 | 10/10/15 30.35 100%
30 100.80 10.34 | 10/13/15 30.35 | 01/22/16 32.06 100%
32 14.00 4.20 | 01/22/16 32.06 | 02/05/16 32.34 100%
34 0.00 0.00 | 05/01/15 27.88 | 05/01/15 27.88 0%
35 5.60 14.45 | 11/21/13 10.00 | 11/26/13 17.57 100%

36 10.50 16.12 | 07/01/15 25.99 | 07/12/15 30.58 | 66.76%

By examining the Cls of the tasks in Table 11-22 and Table 11-23, we can reduce the
equation representing the duration of the project to the following:
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D = D11 + D12 + D14 + D16 + D35 + D18 + Dzo + D[23,28] + ng + D30 + D32, Where
Dy23,26) = max[max (D3, Dy4) + Dy, Dos + D3]

The use of this specific relationship is restricted to the definitions of the duration PDFs
defined in the model. If any of the PDFs of schedule duration changed in a manner that
would affect the Cls of the tasks, the relationship may change.

The PDF of the schedule distribution can be approximated by modeling it as a lognormal
distribution, however if there are discrete risks in the probabilistic critical path (i.e., CI for
any discrete risk is greater than zero) the distribution is accurately modeled as a mixed
distribution. Examining tasks 34, 35 and 36 we see that tasks 35 and 36 (risks R, and R4,
respectively) are on the probabilistic critical path, so the project schedule will have a
mixed distribution. To compare the lognormal approximation to the mixed distribution,
we calculate the lognormal parameters P and Q for the schedule duration in workdays then
derive the percentile statistics for the total schedule duration.

Using Equations 4-5 and 4-6, with up. . = 872.88wd and op, , = 23.09wd, Py, =
6.7714, and Qp.,,, = 0.0265. The resulting plot of the lognormal approximation to the
total schedule duration is shown in Figure 11-9.

Lognormal PDF of Program Duration
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Duration (wd)

Figure 11-9 Lognormal Approximation of Total Schedule Duration

The PDF of the mixed distribution is composed of a continuous distribution consisting of
tasks 11-30 that are always on the critical path (i.e., CI-100%) and combinations of state-
dependent discrete risk durations. Since there are two schedule risks, we expect 2™ =
22 = 4 risk states with conditional outcomes. Beginning with the risk states, S;:

Sy : R, and R do not occur. P(S,) = (1 —0.3)(1 — 0.15) = (0.7)(0.85) = 0.595
S1 R, occurs and R; does not occur. P(S;) = (0.3)(1 — 0.15) = (0.3)(0.85) = 0.255
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S, : R, does not occur and R occurs. P(S,) = (1 —0.3)(0.15) = (0.7)(0.15) = 0.105
Ss R, and R occur. P(S3) = (0.3)(0.15) = 0.045

Risk R, is a discrete uniform distribution with zero duration if the risk does not occur and
has three equiprobable outcomes if the risk occurs (15wd, 25wd, or 40wd). The
equiprobable outcomes have conditional probabilities, P(D)|P(R,) = 0.15/3 = 0.05.
Risk R, has a CI = 1 whether it occurs or not, so it will always be on the critical path. If
risk R; occurs, it has a CI~1, but if it does not occur, its CI = 0.5259, and we will have to
use the maximum of two PDFs to determine the correct duration to use. It has two
possible outcomes: if the risk does not occur the duration is zero, and if the risk occurs the
duration is modeled by a triangular distribution T7(20,25,30)wd. Given the contingent
probabilities of the possible outcomes, we have:

So - 1 outcome: P(S,) = 0.595, D, = Owd
S; : 3 outcomes:
P(S,,) = (0.255)

P(S,,) = (0.255)

= 0.085; Dg,, = 15wd

= Wk

N—" —

= 0.085 ; Ds,, = 25wd

= w

P(S;.) = (0.255)
S, : 1 outcome: P(S,) = 0.1
S5 : 3 outcomes:

P(S3,) = (0.045)

(
P(Ssp) = (0.045)(

N~

= 0.085 ; Ds,_ = 40wd
; Ds, = T(20,25,30)wd

Q6

) =0.015; Ds,, = 15 + T(20,25,30) = T(35,40,45)wd

1
3
1

) =0.015; Ds,, = 25 + T(20,25,30) = T(45,50,55)wd

3

P(Sc) = (0.045) (3) = 0.015 ; Dy, = 40 + T(20,25,30) = T(60,65,70)wd

The continuous distribution to which we combine these discrete risk states (with eight
possible outcomes and associated probabilities of occurrence) is composed of tasks 11, 12,
14, 16, 18, 20, 29, and 30. All of these tasks are on the critical path 100% of the time and
have uncorrelated durations, so their durations are additive. The means will be additive
and the standard deviation of the total will be the square root of the sum of the squares of
the standard deviations. The resulting statistics of the continuous distribution are shown in
Table 11-24.
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Table 11-24 Continuous Distribution Statistics

Task Up, Y
11 101.67 3.12
12 50.83 1.56
14 82.67 4.99
16 62.00 3.74
18 165.33 9.98
20 93.00 5.61
29 62.00 6.16
30 72.00 7.38
32 10.00 3.00

Total 699.50 16.84

When R; does not occur (R;), the duration of the discrete distribution is governed by the
following equation:

Di2328] = max(max (D3, D24) + D37, D3s)

Calculating the mean and standard deviations of the maximum of these distributions
(assuming again that ppr, 57, = 0.75 ) using Equations 10-8 through 10-10, we get:
Hpg = 160.40wd and Opgs = 9.50wd.

The resulting duration statistics for each state are shown in Table 11-25.

Table 11-25 Discrete State Duration Statistics of D3 ;gjand D35

State Risk Prob Up, Op,
Occurrence
So R, N R, 0.595 160.40 9.50
Sia R,, N R, 0.085 175.40 9.50
Sip R,;, N Ry 0.085 185.40 9.50
Sic R,, N R, 0.085 200.40 9.50
S5 R, N R, 0.105 182.50 9.71
S3a R,, N Ry 0.015 197.50 9.71
S3p Ry, N R4 0.015 207.50 9.71
Sa¢ R,. N Ry 0.015 222.50 9.71

Combining the continuous and discrete duration statistics into mixed distribution statistics
(Table 11-26) allows us to compose the mixed distribution shown in Figure 11-10.
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Table 11-26 Mixed Distribution of Duration Statistics

State Risk Prob. Up, ap, Pp, Qp:
Occurrence
So R, N R, 0.595 859.90 19.33 6.757 0.022
Sia R,uNR; 0.085 | 874.90 19.33 6.774 0.022
Sip Rop MRy 0.085 |  884.90 19.33 6.785 0.022
Sic R,, NRs 0.085 | 899.90 19.33 6.802 0.021
S5 R_z N R; 0.105 882.00 19.44 6.782 0.022
Saa Ryq N R; 0.015 897.00 19.44 6.799 0.022
Sab Rqp N Ry 0.015| 907.00 19.44 6.810 0.021
Sac Rye N R, 0.015 922.00 19.44 6.826 0.021
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Figure 11-10 Mixed Distribution of Total Schedule Duration

When we compare plots of the lognormal approximation to the mixed distribution we see
the lognormal approximation is a reasonable one.
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Figure 11-11 Mixed Distribution and Lognormal Approximation of Total Schedule
Duration
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Comparing the results of our analytic approximation to a 100,000-trial statistical
simulation we see very good agreement as well. Differences in the statistics are due to
sampling errors in the simulation (for wd statistics) and due to conversion of the analytic
results into calendar dates (for cd statistics).

Table 11-27 Comparison of Analytic and Statistical Simulation Finish Date Statistics

Finish Date Analytic Approach Statistical Simulation
U, (wd) 02/20/15 02/18/15
o, (wd) 23.09 23.74
Ur (cd) 02/05/16 01/24/16
o (cd) 32.34 33.17

11.2.2 Cost Probability Distribution
The program’s costs are the sum of the lowest-level WBS elements shown in Table 11-28.
The cost of each lowest-level WBS element is defined by a time-dependent (TD) costs
(i.e., those costs that vary with the duration of each task), and a time-independent (TI) cost
(i.e., the probabilistic daily rate or other additive costs not related to schedule duration).

Table 11-28 NASA Example WBS and Point Estimate

WBS WBS Description Point Estimate, $
1 Analysis File $151,500,000.00
1.1 Milestone Summary $0.00
1.1.1 Project ATP
1.1.2 PDR
1.13 CDR
1.1.4 Rocket delivery
1.2 Project Support Costs hammock task $20,000,000.00
1.2.1 Support Start
1.2.2 Support Finish
1.3 Preliminary Design $9,000,000.00
1.3.1 Requirements definition and documentation $4,000,000.00
1.3.2 Preliminary design activities $5,000,000.00
1.4 Detailed Design $48,500,000.00
14.1 Initial detailed design
14.2 Design GN&C $15,000,000.00
1.4.3 Trade studies and analysis
1.4.4 Design pyrotechnics $7,500,000.00
1.4.5 Design propulsion system $12,000,000.00
1.4.6 Design structures and mechanisms $9,000,000.00
1.4.7 Finalize integrated design $5,000,000.00
1.5 Development and Unit Testing $42,000,000.00
1.5.1 Fabricate rocket Components $30,000,000.00
1.5.1.1 Fabricate and unit test structure (including pyros) $20,000,000.00
1.5.1.2 Fabricate and unit test engine $10,000,000.00
1.5.2 Develop and test flight software for GN&C $12,000,000.00
1.6 Integration and Testing $29,000,000.00
1.6.1 Integrate rocket components $6,000,000.00
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WBS WBS Description Point Estimate, $
1.6.2 Test frame, fuel system and engine $8,000,000.00
1.6.3 Test guidance system $5,000,000.00
1.6.4 Final integration and testing $10,000,000.00
1.7 Delivery $3,000,000.00
1.7.1 Delivery $3,000,000.00
2 Risk Register $0.00
2.1 Risk 1 - TI - Additional Purchase $0.00
2.2 Risk 2 - Duration - Additional Studies Required $0.00
2.3 Risk 3 - Tl and Duration - Delay from Additional Software Purchase $0.00

Individual lowest-level WBS element Costs, X;, are defined by the combination of TD and
Tl costs as follows:

X, =
ETDl-eTDL.)(TIieT,i) = Duration’;erp Rate;er, ,if TI is multiplicative

{[(TDieTDi)(TIi)] + ¢ = (Duration’;erp,Rate;) + ery, ,if Tl is additive

where:

ery; 1sthe TI PDF

&rp, is the TD PDF

Duration'; is the probabilistic task duration in wd.
Rate; is the nominal cost per wd.

11-2

11.2.2.1 Cost-Estimating-Level Uncertainty Statistics
The rate, and the Tl and TD PDFs for each lowest-level WBS element in the NASA
example are shown in Table 11-29.

Table 11-29 NASA Resource-Loaded Schedule T1 and TD Cost PDFs

WBS Rate ($/wd.) TD Cost PDF Tl Cost PDF
1.2 $23,809.52 N*(100,5)
131 $40,000.00 T*(95,100,105)
1.3.2 $90,000.00 T*(95,100,105) N (500000,40000);
p (DESFABCOST=0.3)
1.4.1 $0.00
1.4.2 $93,750.00 T*(95,100,105)
14.3
1.4.4 $75,000.00 T*(95,100,105)
1.4.5 $75,000.00 T*(95,100,105)
1.4.6 $75,000.00 T*(95,100,105)
1.4.7 $55,555.56 T*(95,100,105)
1.5.1.1 $166,666.67 T*(95,100,105) T*(80,100,110);
p(DESFABCOST=0.3)
1.5.1.2 $83,333.33 T*(95,100,105) T*(80,100,110);
p (DESFABCOST=0.3)
1.5.2 $80,000.00 T*(95,100,105)
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1.6.1 $150,000.00 T*(95,100,105)

1.6.2 $228,571.43 T*(95,100,105)

1.6.3 $83,333.33 T*(95,100,105)

1.6.4 $142,857.14 T*(95,100,105)

1.7.1 $300,000.00

2.1 R(0.3,T($8M,$10M,$13M))
2.2

2.3 R(0.3,T($13M,$15M,$20M))

The means and standard deviations of the triangular TD and Tl PDFs are calculated using
Equations 4-1and 4-2. Table 11-30 shows the rates and workday duration statistics of the
schedule summary tasks.

Table 11-30 Rate, Duration and Uncertainty Statistics for Cost-Estimating-Level
WBS Elements

WBS Rate Mp, Op, llsTD GETD u-s—n osTl
1.2 $23,809.52 | 872.88 | 23.10 1] 0.0500

1.3.1 $40,000.00 | 101.67 3.12 0.0204

1.3.2 $90,000.00 50.83 1.56 0.0204 | +500000 40000

1.4.2 $93,750.00 | 165.33 9.98 0.0204

1.44 $75,000.00 | 103.33 6.24 0.0204

1.4.5 $75,000.00 | 165.33 9.98 0.0204

1.4.6 $75,000.00 | 124.00 7.48 0.0204

1.4.7 $55,555.56 93.00 5.61 0.0204

1.5.1.1 | $166,666.67 | 114.00 | 10.39
1.5.1.2 $83,333.33 | 114.00 | 10.39

0.0204 0.9667 | 0.0624
0.0204 0.9667 | 0.0624

RiRrIRRRIRPRIRR|IR|IR(R[R|R Rk

1.5.2 $80,000.00 157.5 7.50 0.0204 1 0
1.6.1 | $150,000.00 40.00 6.00 0.0204
1.6.2 | $228,571.43 36.17 3.60 0.0204
1.6.3 $83,333.33 62.00 6.16 0.0204
1.6.4 | $142,857.14 72.00 7.38 0.0204
1.7.1 | $300,000.00 10.00 3.00 0

Using values form Table 11-30 and Equation 11-2, we can calculate the mean and standard
deviation of each cost-estimating-level WBS Element (Table 11-31).

Table 11-31 Mean and Standard Deviations of Cost-Estimating-Level WBS Elements

WBS Hx Ox

1.2 | $20,782,813.74 $549,947.19
1.3.1 $4,066,666.67 $149,842.51
1.3.2 $5,075,000.00 $173,253.56
1.4.2 | $15,500,000.00 $987,658.22
1.4.4 $7,750,000.00 $493,829.11
1.4.5 | $12,400,000.00 $790,126.57
1.4.6 $9,300,000.00 $592,594.93
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WBS Hx Ox
1.4.7 $5,166,666.67 $329,219.41
1.5.1.1 | $18,366,666.67 $2,088,349.29
1.5.1.2 $9,183,333.33 $1,044,174.65
1.5.2 | $12,600,000.00 $652,916.53
1.6.1 $6,000,000.00 $908,480.87
1.6.2 $8,266,666.67 $839,232.45
1.6.3 $5,166,666.67 $524,520.28
1.6.4 | $10,285,714.29 $1,075,541.71
1.7.1 $3,000,000.00 $900,000.00

11.2.2.2 Computing WBS-Element Correlations

The statistics of the summary-level WBS elements are computed using the FRISK method
described in Section 4.2.2.1. All but four of the WBS elements in the NASA resource-
loaded schedule are uncorrelated to each other. Correlations are defined between the
following: 1) schedule duration PDFs for WBS elements 1.5.1.1, 1.5.1.2, and 1.5.2 (i.e.,
tasks 23, 24 and 25) with a correlation coefficient defined by ppgypyr = 0.75; and
between time independent cost PDFs for WBS elements 1.3.2, 1.5.1.1, 1.5.1.2 (i.e., tasks
12, 23 and 24) with a correlation coefficient defined by pprsragcosr = 0.3.

The effects of the correlated schedule durations will manifest themselves in the standard
deviations of the cost summations of WBS elements 1.5 and 1.51. The correlated time
independent cost correlations will affect the standard deviations of the WBS elements
where they are summed (i.e. WBS elements 1 and 1.51). The standard deviations of all
other summary WBS elements can be computed using a root-sum-square of their
constituent WBS elements.

The correlations between schedule durations and the respective costs for WBS elements

...................

will calculate them in that order.

P15111512

We use Equation 4-26, and following the steps in Section 8 to compute the correlation
coefficient. From Section 8, Step 1, which is:

E[X1511X1512]E[X1511]E[X1512] _ ElX1s511X1512]-H15110151.2

P15111512 = =
! 01.51.101.5.1.2 01.51.101.5.1.2

— y ,
X511 = (Duratlon 1.5.1.1€TD1,5,1,1)(Rate1.5.1.15T11_5,1_1)

The TD uncertainty defined for WBS 1.5.1.1 iserp ., = T(0.95,1.00,1.05). Using
Equations 4-1 and 4-2, Herp, = 1, and Oerp, o1, = 0.0204.
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The TI uncertainty defined for WBS 15.1.1 isep, . =T7(0.80,1.00,1.10). Using
Equations 4-1 and 4-2 we get: Hery .. . = 0.9667, and Oert, o1y = 0.0624.

We can rearrange the cost function as X; s, = R1.5.1.1DI1.5.1.1ETD(1.5.1.1)£TI(1.5.1.1)l and by
setting €15.1.1 = €rp(1.5.1.1)ET1(1.5.1.1), We can simplify some of the equations.

By definition for each WBS element, the Tl and TD uncertainty PDFs are uncorrelated, so

'u€1.5.1.1 = /’lfTD(1.5.1.1)M5T1(1.5.1.1)’ and

2

2 2
051.5.1.1 = \/(O-STD(1.5.1.1)M5T1(1.5.1.1)) + (METD(1.5.1.1)O-ETI(1.5.1.1)) + (O-STD(1.5.1.1)0-5T1(1.5.1.1)) )

From Table 11-30 Upr, <y, = Mpr,, = 114wd, op, ., = op,,, = 10.39wd, and
Rate; 5,1, = $166,666.67 , which is a constant.

From Step 238, 1511 = Hrygyy (Borysqibessr,) = $166,666.67(114)(0.9667) =
$18,366,666.67

From Step 2b, 01511 = Var(oy511) = Ris11Var(D'ys11€151.1)

Using the propagation of errors method:

—R 2 2 2
01511 = Ris511 (O-D’1.s.1.1'u€1.5.1.1) + (MD’1.5.1.10-81.5.1.1) + (O-D’1.5.1.10-€1.5.1.1)

01511 =
$166,666.67\/([10.39] [0.9667])% + ([114][0.06542])? + ([10.39][0.06542])?

01511 = $2,088,349.29.

Using the same formulation for X; <, ,, we get:

1512 = $9,183,333.33 and 0y 5 1, = $1,044,174.65
From step 2c,

X1511%1512 = Ris11(D'151181511)R1512(D'1512815.1.2)

— ! !
X1511X1512 = Ri511R1512(D'1511€151.1)(D'1.5128151.2)

From Step 2d, a = Ry511R15.12

E[X1511X1512] = aE[(D'1511€1511)(D'1512€1512)]

Grouping correlated error terms gives us:
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E[Xy511X1512] = aE[(D'1511D"1512)(e15118151.2)]
E[X1511X1512] = aE[(D'1511D"1512)]E[(€1.51.1615.1.2)]

E[D'y 511D 15120 = U1y g1 1801515 F PD1v11D0715120D115119D01515
E[D'y511D"1512] = (114)(114) + (0.75)(10.39)(10.39) = 13,077

Expanding the expectation of the uncertainty term, we get:
Ele151281511] = E[ETD(1.5.1.1)5T1(1.5.1.1)STD(1.5.1.2)€T1(1.5.1.2)]

= E[gTD(1.5.1.1)£TD(1.5.1.2)]E[ETI(1.5.1.1)gTI(l.S.l.Z)]
= ('ufTD(1.5.1.1)'ugTD(1.5.1.2)) (”8T1(1.5.1.1)HETI(1.5.1.2) + pgTI(1.5.1.1),€TI(1.5.1.2)UETI(1.5.1.1) 03T1(1.5.1.2))

= (M€T1(1.5.1.1)M€T1(1.5.1.2) + pSTI(l.S.l.1)’5TI(1.5.1.2)O-STI(1.5.1.1)O-ETI(1.5.1.2))

E[€1-5-1-2€1-5-1-1] = 'u‘?TI(1.5.1.1)M5T1(1.5.1.2) + p5T1(1.5.1.1)v5T1(1.5.1.2)O-STI(1.5.1.1) 05T1(1.5.1.2)

Ele; 512615111 = (0.9667)(0.9667) + (0.3)(0.0624)(0.0624) = 0.9356

Recombining terms, we get:

E[D'1511D"15121E[€151281511] =

('uD’1.5.1.1MD’1.5.1.2 + pD’1.5.1.1’D’1.5.1.2GD’1.5.1.10D’1.5.1.2) ('ufTI(1.5.1.1)H5T1(1.5.1.2) +

p5T1(1.5.1.1)15T1(1.5.1.2) 05T1(1.5.1.1) O-ETI(1.5.1.2))
M = (13077)(0.9356 ) = 12,234.99

KDy g1 MDry e, , = (114)(114) = 12,996

From Step 3, and removing the rate term, we get:

_12,234.99-12,996
P151.1,15.1.2 = Joe518)(10.6518)

= 0.5793

P1511152a0d P1512152
P1s11,152 and pisq1215, are calculated in a similar fashion, except p;, ., ., ., =0 and

=0.

p51.5.12,€1.5.2

This simplifies the product moment term to:
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E[D'1511D"152]1E[€15281511] =

(MD’1.5.1.1”D’1.5.2 + PDry 511,015, UD’1.5.1.1GD’1.5.2) (‘uETI(l.S.l.l)M5T1(1.5.2))

............

P1511,152 =

(D14 51.1HD1152+PDI151.1D11 52 GD’1.5.1.1UD’1.5.2)(”571(1,5_1,1) “€T1(1_5,2))_“D’1.5.1.1”D’1.s.2

2 2 2 2 2 2
\/(JD’1.5.1.1) +(upry54.1%1511) +(D11511%151.1) \/(JD’1.5.1.3) +(1p1y 513%1513) +(9D11513%1513)

P151.2152 =

(D1 51.,#D11 55+PDI151.2071.529D1 15,12 UD’l.S.Z)(HSTI(LS.LZ)H5T1(1.5.2))_‘uD’l.S.l.Z Kprys>

2 2 2 2 2 2
\/(UD’1.5.1.2) +(tp1y 51201 512) +(0D1151,%1512) \/(GD’l.S.Z) +(1p1y5,0152) +(0D11 5,0615.2)

......

uD,l.S.l.ZMD’LS.Z = (114‘)(1575) == 17,955
pD’l.S.l.Z'Dll.S.ZO-D’1.5.1.20-D’1.5.2 = (0.75)(10.39)(7.50) S 58.46

= (0.9667)(1) = 0.9667

“€T1(1.5.1.1)“€T1(1.5.2)

2 2 2
\/(00’1.5.1.1) + (HD’1.5.1.1G€1.5.1.2) + (00’1.5.1.1051.5.1.2) = 10.65wd

\/(GD'l-S-Z)Z + (‘UD’1.5.2 051_5.2)2 + (O-D’1.5.20—€1.5.2)2 = 8.16wd, so

(17,955+58.46)(0.9667)—17,955

P1511,152 = (10.65)(8.16) = 0.5526

......

(17,955+58.46)(0.9667)—17,955
(10.65)(8.16)

= 0.5526.

P1512152 =

The correlation matrix for WBS 1.5’s subordinate elements is:

1 0.5793 0.5526
P1s = |0.5793 1 0.5526
0.5526 0.5526 1

P1321511,and P132152

The second set of correlations defined in the NASA resource-loaded schedule are those
defined between TI PDFs. The correlations between independent cost PDFs affect the
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correlation between WBS elements 1.3.2, 1.5.1.1, 15.1.2. We need to calculate
P1321511 ahd pi32152. Since there is no correlation between the durations of these
WBS elements,

E[X132X1511]—E[X132]E[X1511] _ E[X1511X1512]—M13208151.1
01.3.201.51.2 013.201.5.1.1

P1321511 =

X132 = (D,1.3.2£TD1,3.2)(R1.3.2) térr 4,
Xi511 = (D’1.5.1.13TDL5,1,1)(R1.5.1.1€T11,5_1,1)

X132X1511 = [(D,1.3.28TD1_3.2)(R1.3.2) + 8T11_3,2](DI1.5.1.1€TD1_5.1,1)(R1.5.1.1€T11,5_1.1)

X132X1511 =
! ! !
Ry32R1511D 132D 1511670, 2,€TDy 6116l s11 T €T15,R81.5110151.18TD, 61,1 €T 1 614

Setting a = R; 3,R; 511 (a constant) we get:

X132X1511 =
1A ! 1A
aD’y3,D 1.511ETDy 32€TD1 511l c1, T ST11.3.2R1.5.1.1D 1.5116TDy 511 €Tl 511

E[X1.3.2X1.5.1.1] =

! !/ !/
ak [D 132D 1-5-1-1£TD1.3.2STD1.5.1.1£T11.5.1.1] + R1-5-1-1E[D 1-5-1-18TD1.5.1.1£T11.5.1.1£T11.3.2]
Separating the correlated terms results in:

E[X1.3.2X1.5.1.1] =
ak [D’1.3.2D’1.5.1.1]E[STDL&2 STD1.5,1_1]E[5T11,5.1.1] +

R1.5.1.1E[D'1.5.1.1]E[STD1_5_1_1]E[£T11_5_1_15T11_3_2]

U132 = $5,075,000.00 and oy 5, = $173,253.56

U511 = $18,366,666.67 and oy 511 = $2,088,349.29
Computing each product moment term

a=Ry3,Ri 511 = ($90,000.00)($166,666.67 ) = 1.5E + 10

E[D'y5,1] = 114,and Eerp, ] =1
Since PDry35D11511 = 0,

E[D'13,D"1511] = UprisMDrisqq

E[D'y5,D'1511] = (50.83)(114) = 5,795

159



ANALYTIC METHOD FOR RISK ANALYSIS

E[ETD1.3.2£TD1.5.1.1] = /’lfTD1_3_2'u€TD1,5_1,1 =1

Eler, ., ,] =0.9667

E[5T11,5.1,15T11_3,2] = Hepy, , HMery, o, + Peryy 5 0.m11 229671, 5, %€T1, 6 14

Using values from Table 11-30, we get:

Eler, ., er1,,,] = (500,000)(0.9667) + (0.3)(40,000)(0.0624) = 484,081.66
Computing the product moment term using previously computed values results in:
E[X152X1511] = (1.5E + 10)(5,795)(0.9667) + ($166,666.67 )(114)(484,081.66)
E[X;3,X1511] = 9.32251E + 13

Computing the product of the means provides:

Ui32M1511 = (835,075,000.00)($18,366,666.67 ) = 9.32108E + 13
E[X1511X1512] — M13201511 = $14,218,298,069.73

013201511 — 361814‘E + 11

(9.32251E+13)—(9.32108E+13)
3.61814E+11

= 0.0393

P1321511 =

Substituting the values from WBS 1.5.1.2 into the equation and solving we obtain
P1321512 = 0.0393.  The results of a 100,000-trial statistical simulation show

.....

11.2.2.3 Statistical Summation of WBS Element Costs
Once the correlation coefficients between correlated WBS elements have been computed,
the total cost can be calculated through statistical summation. The mean of total cost from
Equation 4-10 is:

IJ‘T = E[ ?:1 Xl] = ?zlE[Xi] = Z?zl IJ‘Xi

A simplified equation for calculating the variance of the total cost when dealing with the
standard deviations of correlated (o.,,) and uncorrelated (o,,.) WBS elements based on
Equations 4-11 and 9-12 is Equation 11-3. This relationship greatly simplifies the
computation of variances of programs with many WBS elements by limiting the number of
matrix multiplications required.

or® = Var(Xy) = GuncTIGunc + o-coero-cor , Where 11-3
Ounc IS @ column vector of standard deviations of uncorrelated WBS
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elements with dimension 1xM,
O.or IS @ column vector of standard deviations of correlated WBS
elements with dimension 1xN,

I is the identity matrix with dimension MxM,

p is the correlation matrix with dimension NxN, and

()T is the transpose operation

We use the latter equation to account for the correlation between WBS elements 1.3.2,
1.5.1.1,1.5.1.2, and 1.5.2, whose correlation matrix is (in that row and column order):

1

0.0393
0.0393 0.5793 1

p:

0.0393 0.0393

1 0.5793

0.0000 0.5526 0.5526

0.0000

0.5526

0.5526
1

The results of the MOM and 100,000-trial Statistical Simulation Summation of the WBS
Elements are shown in Table 11-32. These results indicate very good agreement between

the two methods.

Discrepancies in the results obtained using the two approaches are

primarily caused by approximations used in the calculation of workday statistics using the
analytic method, inexact statistical sampling of correlated random variables by the
statistical simulation, and difficulties of the statistical simulation when dealing with
discrete risks (as discussed in Section 9.1.8).

Table 11-32 Results of MOM and Statistical Simulation Summation of WBS Elements

WBS Analytic Method 100,000-Trial Statistical Simulation
Hx Oox Hx Ox
1 $160,810,194.69 $11,333,411.24 $160,756,897.76 $10,050,372.90
1.2 $20,782,813.74 $1,176,015.04 $20,730,787.20 $1,179,300.81
1.3 $9,141,666.67 $229,062.38 $9,141,657.73 $228,767.50
1.3.1 $4,066,666.67 $149,842.51 $4,066,668.80 $149,839.56
1.3.2 $5,075,000.00 $173,253.56 $5,074,988.93 $173,027.10
1.4 $50,116,666.67 $1,517,626.47 $50,116,585.59 $1,514,678.61
1.4.1 $0.00 $0.00 $0.00 $0.00
1.4.2 $15,500,000.00 $987,658.22 $15,499,948.07 $986,900.52
1.4.3 $0.00 $0.00 $0.00 $0.00
1.4.4 $7,750,000.00 $493,829.11 $7,750,025.08 $494,218.56
1.4.5 $12,400,000.00 $790,126.57 $12,399,988.36 $789,913.58
1.4.6 $9,300,000.00 $592,594.93 $9,299,952.17 $591,903.15
1.4.7 $5,166,666.67 $329,219.41 $5,166,671.91 $329,327.90
1.5 $40,150,000.00 $3,495,228.26 $40,151,376.12 $3,276,044.29
1.5.1 $27,550,000.00 $3,265,642.58 $27,551,339.35 $2,834,945.88
1.5.11 $18,366,666.67 $2,088,349.29 $18,367,694.56 $2,097,256.41
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WBS Analytic Method 100,000-Trial Statistical Simulation
Hx Ox Hx Ox
1.5.1.2 $9,183,333.33 $1,044,174.65 $9,183,644.79 $1,046,930.09
1.5.2 $12,600,000.00 $652,916.53 $12,600,036.77 $653,556.59
1.6 $29,719,047.62 $1,720,918.39 $29,718,882.73 $1,724,308.57
1.6.1 $6,000,000.00 $908,480.87 $5,999,968.14 $908,846.37
1.6.2 $8,266,666.67 $839,232.45 $8,266,635.33 $838,788.65
1.6.3 $5,166,666.67 $524,520.28 $5,166,665.32 $524,447.49
164 $10,285,714.29 $1,075,541.71 $10,285,613.94 $1,074,641.82
1.7 $3,000,000.00 $900,000.00 $2,999,969.14 $900,141.94
1.71 $3,000,000.00 $900,000.00 $2,999,969.14 $900,141.94
2 $7,900,000.00 $10,478,546.08 $7,897,639.25 $8,785,656.92
21 $3,100,000.00 $5,687,706.04 $3,098,858.74 $4,766,730.77
2.2 $0.00 $0.00 $0.00 $0.00
2.3 $4,800,000.00 $8,800,564.07 $4,798,780.51 $7,374,605.76

11.2.2.4 PDF of Total Cost
The PDF of the total cost can be approximated by a lognormal distribution or by
computing the exact, mixed distribution. The lognormal approximation is easily obtained,
as it was for the schedule PDF, by computing the lognormal parameters P and Q then
deriving the percentile statistics for total cost. Using Equations 4-5 and 4-6, with uy, =
$160,810,256.90 and oy, . = $9,765,611.10, Py, . =18.8939, and Qy, . = 0.0607.

The resulting plot of the lognormal approximation to the total schedule duration is shown
in Figure 11-12.

Lognormal PDF of Program Cost
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Figure 11-12 Lognormal Approximation of Total Cost
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The PDF of the mixed distribution has a continuous distribution component and a discrete-
risks component. Since there are two risks in the discrete-risks component affecting the
total cost (R, and R3), we will derive a set of risk-state statistics for each state. There are
2™ = 22 = 4 risk states with conditional outcomes. Beginning with the risk states, S;:

Sy : Ry and R5 do not occur. P(S,) = (1 —0.3)(1 — 0.3) = (0.7)(0.7) = 0.49

S1 ¢ Ry occurs and R does not occur. P(S;) = (0.3)(1 —0.3) = (0.3)(0.7) = 0.21
S, : R, does not occur and R4 occurs. P(S,) = (1 —0.3)(0.3) = (0.7)(0.3) = 0.21
Ss Ry and R5 occur. P(S3) = (0.3)(0.3) = 0.09

R, has two possible outcomes: the cost is zero if the risk does not occur and if the risk
occurs, the cost is modeled by a triangular distribution T ($8M, $10M, $13M). R5 also has
two possible outcomes: the cost is zero if the risk does not occur and if the risk occurs, the
cost is modeled by a triangular distribution T($13M, $15M, $20M).

Given these four possible outcomes, we have these states:

So : P(So) = 0.49, X5, = $0

Sy P(Sy) = 0.21; X, = T($8M, $10M, $13M)

S, P(S,) = 0.21; X5, = T($13M,$15M, $20M)

S3: P(S3) = 0.09 ; X5, = T($8M,$10M, $13M) + T($13M, $15M, $20M)

The continuous distribution to which we combine these discrete risk states is composed of
WBS Elements 1.1 to 1.7. The resulting moments of the continuous distribution (Xc,,,¢)
are:

txo,.. = $152,860,068.75, and gy, = $4,272,695.15

The statistics of the discrete-risk states (uy,, andoy, ) are computed using the

calculations of the moments of the triangular distributions and (in the case of S5, which is a
sum of triangular distributions) statistically summing them using Equations 4-10 and 4-11.
The distributions of the triangular PDFs of the two risks are uncorrelated, so the standard
deviation of the impact of state S5 is the square root of the sum of the squares of the
standard deviations of the two triangular PDFs. The results are

So i P(So) = 049,y =$0, 0y, = $0

Sy P(Sy) = 0.21; g, = $10,333,333.33, 0y, = $1,027,402.33
S, P(Sy) = 0.21; py,, = $16,000,000.00, 0y, = $1,471,960.14
S3:P(S3) = 0.09; uy,,.. = $26,333,333.33, 0y, = $1,795,054.94
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To create the mixed distribution of the project cost, fy (x), we combine the continuous

and discrete distributions using Equation 11-4. fy (x) represents the probability-of-

occurrence-weighted sum of the PDFs of the individual states.
fm () = Xizo Ps, fxs, () , where 11-4

ps; = the probability of occurrence of state S;

szi (x) =the PDF of state S;

The probabilities of occurrence and statistics used in this operation are shown in Table
11-33.

Table 11-33 Mixed Distribution of Cost Statistics

State Risk Prob. [15% Ox Py Qx
Occurrence
So R—1 n R—3 0.49 $152,860,068.75 $4,272,695.15 18.8446 0.0290
S1 RN R_3 0.21 $163,193,402.08 $4,394,482.83 18.9101 0.0269
S, R—1 N R; 0.21 $168,860,068.75 $4,519,136.03 18.9442 0.0268
S RiNRy 0.09 $179,193,402.08 $4,634,452.08 19.0036 0.0259

The mixed distribution shown in Figure 11-13 is a plot of fy (x) . This is a multimodal
PDF, and evidence of the discrete components are visible near the means of each state.
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Figure 11-13 Mixed Distribution of Total Cost

When we compare plots of the lognormal approximation to the mixed distribution we see
the lognormal approximation captures the overall mean and standard deviation, but it does
not accurately portray the multimodal nature of the mixed distribution.
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Figure 11-14 Mixed Distribution and Lognormal Approximation of Total Cost

11.2.2.5 Comparison of Total Cost Results
The statistics of the total cost (and their differences) computed using MOM and a 100,000-
trial statistical simulation are provided in Table 11-34.

Table 11-34 Total Cost Results from Analytic Approach and Statistical Simulation

Computed Values Difference
Analytic Statistical Simulation Additive Percent
Hx $160,810,256.90 $160,759,226.85 -$51,030.05) -0.032%
Oy $9,765,611.10 $10,064,871.60 -$299,260.50) -3.064%

11.2.3 Joint Cost and Schedule Distribution
The joint cost and schedule distribution is modeled using a bivariate normal distribution as
shown in Equation 11-5.

11-5

. 1 P o
BiL ((Plr PZ)J (Ql) QZJ )01,2)) = fX,D/(x, d) = F e {ZW} ;
2mQ1Q2 |1—-p12X1X2

1 In()-P\* In(x)-Py\ (In(d)—P, In(d)-P;\?

where w = 1-p%, [( Q1 ) Zpl'z( Q1 )( Q2 )+( Q2 ) ]'
1

P12 = @ln [1 + le_XZ\/tez — /e — 1J, and

Px, x,1S the correlation coefficient between RVs X, and X,.

The parameters of the lognormal marginal distributions are
uyx = $160,810,194.69, and oy = $11,333,411.24

1y, = 872.88wd and g, = 23.09wd
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The correlation between the total cost and schedule PDFs is calculated using Equation
11-6.

py p = FXPIZEXIED) _ EXDI-pxttor, e 11-6

Ox0py Ox0pr
X = Yi—..was X, the sum of the costs of the lowest-level WBS elements, X;
D =} -ssg D;, the sum of the serialized schedule elements (SSE), D;

It is important to note that there will actually be several correlation coefficients between
the cost and schedule PDFs, since each state will have a different set of values in Equation
11-6. For purposes of this example, we will use the correlation of the combined states.

The sum of the serialized schedule element durations for the NASA example is:
D =Dy +Dyy + Dy + D[15119] + Dy + D[23‘28] + Dyg + D3y + D35, Where
Di15,19) = max(Dys, D16 + D35 + D17, D16 + D35 + Dig, D16 + D35 + Dyo), and
Di2328) = max[max(D,3, Dy4) + Dy, Dys + D3e]

If we eliminate tasks with CI =0 from D, the serialized schedule equation becomes
Equation 11-7.

D - D11 + D12 + D14_ + D16 + D35 + D18 + DZO + D[23,28] + D29 + 11'7
D30 + D32, Where D[23,28] = max[max<D23, D24) + D27, D25 + D36]

The product of cost (X) and duration (D), which is a term required to calculate the
correlation between them, is the rather large polynomial expression formed by:

XD = (Y=g Xi)(Dll + D1y + Dyy + D1 + D35 + Dig + Dy + Dip328) + Dag + D3 +
Ds,)

Since the numerator of the correlation equation, E[XD] — E[X]E[D], represents the
covariance terms, we only need to account for the correlated durations. X and D are only
correlated to each other through their durations, since rates and uncertainties are
uncorrelated within the same WBS element. We know the expectation of a squared
duration is E[D;D;] = E[D;*] = pup,? + ap ?

Its contribution to the numerator in the correlation equation will be:
21 — g2[p.] = g, 2
E[D;*] - E*[D;] = ap * .

This means that any individual task, j, on the critical path with CI; = 1 will have
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Pp;p; =1, and if it is uncorrelated to other tasks, its contribution to the numerator of the
correlation equation will be represented simply by aD].Z. We also know the expectation of
two correlated durations is:

E [DkD]] = nu'DknuDj + pDk,DjO-DkO-Dj
Their contribution to the numerator in the correlation equation will be:
E[DRD]] - E[Dk]E[D]] = nu'DknuDj + pDk,DjO-DkO-Dj - :uDknu'Dj = pDk,Djo-Dko-Dj

The elements of the product XD that will remain in the numerator of the correlation
equation are:

1) Ri(%'i)zﬂsmum_’ for tasks i = [11,12,14,16,20,29,30,32],
2) RiOp Herpypey, (Poryor,00r, ), for tasks i = [7,23,24,25,27], and j = [7, [23,28]],
and Ri0p fep, i, 19 Substituted with P(R3)ap, for task 36.%
The first term is quite simple to calculate and results in: 23,476,686.51.

The second term is calculated through the matrix multiplication of the matrix of correlation
coefficients between i and j shown in Figure 11-15.

p D7 D11 D12 D16 D35 D18 D20 D[23,28] D29 D30 D32
7 1] 0.1350 0.0675 0.1620 0.4469  0.4321 0.2430] 0.5613] 0.2670  0.3197  0.1299
11 | 0.1350 1 0 0 0 0 0 0 0 0 0
12 | 0.0675 0 1 0 0 0 0 0 0 0 0
16 | 0.1620 0 0 1 0 0 0 0 0 0 0
35 | 0.4469 0 0 0 1 0 0 0 0 0 0
18 | 0.4321 0 0 0 0 1 0 0 0 0 0
20 | 0.2430 0 0 0 0 0 1 0 0 0 0
23 | 0.4500 0 0 0 0 0 0 0.2661 0 0 0
24 | 0.4500 0 0 0 0 0 0 0.2661 0 0 0
25 | 0.3248 0 0 0 0 0 0 0.3865 0 0 0
27 | 0.2598 0 0 0 0 0 0 0.1536 0 0 0
29 | 0.2670 0 0 0 0 0 0 0 1 0 0
30| 0.3197 0 0 0 0 0 0 0 0 1 0
32| 0.1299 0 0 0 0 0 0 0 0 0 1
36 | 0.3248 0 0 0 0 0 0 0.6168 0 0 0

Figure 11-15 Matrix of Correlation Coefficients between WBS Elements i and Tasks j

% Task 35 does not have a cost impact, so it does not appear in the term of the product moment.
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The resulting calculations give us the numerator of the correlation between cost and
schedule, which is 120,005,239.009.

We will use the duration statistics (in wd) to calculate the correlation between cost and
schedule. When we use them in the correlation equation, we get:

E[XD] — E[X]E[D] 120,005,239.09

= = = 0.5322
Px.p 0% 0D, (9,765,611.10 )(23.09)

The resulting calculations show, for the combined risk states, py , = 0.5322. The results
from the 100,000-trial statistical simulation show py , = 0.5597 , which is very similar.

Using Equation 11-5, we are able to provide a three-dimensional plot of the bivariate
lognormal PDF of cost and schedule using:

Uy = $160,810,256.90 , oy = $9,765,611.10

1, = 872.88 wd, o, = 23.09 wd.
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Figure 11-16 Bivariate Lognormal Probability Density of Cost and Schedule

The mixed distribution of cost and schedule relies on the distributions of the individual states, S;,
whose parameters are provided in Table 11-35. The state in which no risks occur, s, , accounts for
41.65% of the outcomes. This state has cost and schedule means of $152,860,068.75 and 859.90
wd, respectively. The other states have appreciably lower probabilities of occurrence, but their
means represent larger values.
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Table 11-35 Lognormal Distribution Parameters of Joint Cost and Schedule

Probability States

Si Risk Occurrence P(S;) Ux Oy Up, Op,

So R,NR,NnR; | 0.4165 | $152,860,068.75 | $4,272,695.15 | 859.90 | 19.33
S R,NR, NR, 0.1785 | $168,860,068.75 | $4,519,136.03 | 882.00 | 19.44
Saa R,NR,, NR; | 0.0245 | $152,860,068.75 | $4,272,695.15 | 874.90 | 19.33
Sob R,NR,,NR; | 0.0245 | $152,860,068.75 | $4,272,695.15 | 884.90 | 19.33
Syc R,NR,,NR; | 0.0245 | $152,860,068.75 | $4,272,695.15 | 899.90 | 19.33
Saq R,NR,, NR; | 0.0105 | $168,860,068.75 | $4,519,136.03 | 897.00 | 19.44
Sap R, NR,,NR; | 0.0105 | $168,860,068.75 | $4,519,136.03 | 907.00 | 19.44
Sac R,NR,,NR; | 0.0105 | $168,860,068.75 | $4,519,136.03 | 922.00 | 19.44
Sy R,NR,NR; |0.1785 | $163,193,402.08 | $4,394,482.83 | 859.90 | 19.33
Se R, NR,NR; | 0.0765 | $179,193,402.08 | $4,634,452.08 | 882.00 | 19.44
Sea R;NR,, NR; | 0.0105 | $163,193,402.08 | $4,394,482.83 | 874.90 | 19.33
Seb R;NR,, NR; | 0.0105 | $163,193,402.08 | $4,394,482.83 | 884.90 | 19.33
Sec R, NR,,NR; | 0.0105 | $163,193,402.08 | $4,394,482.83 | 899.90 | 19.33
S7a RN Ry, NR; | 0.0045 | $179,193,402.08 | $4,634,452.08 | 897.00 | 19.44
Syp RiNRy,, NR; | 0.0045 | $179,193,402.08 | $4,634,452.08 | 907.00 | 19.44
Sye RiNR,, NRy | 0.0045 | $179,193,402.08 | $4,634,452.08 | 922.00 | 19.44

The joint PDF formed is a mixture distribution formed by the probability-weighted joint
PDFs of each state (Figure 11-17). Note the variance of the mixed distribution is much
greater than that of any of the individual states. This is due to the variance contribution of
each state’s distance to the mean of the mixed distribution.
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\ 4 . T \:-\,‘\_ .
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Figure 11-17 Joint Probability Density of Cost and Schedule
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The probability that the project will cost equal to or less than the point estimate of cost
(PEX) and will be completed on or before the schedule point estimate (PED) is evaluated
through integration of the following joint cost and schedule PDF:

Pld < PED;x < PEX] = [, [* f» x(d, x) dDdx

We can set the upper limits of the integral above using the point estimate for cost, PEX =
$151,500,000, and the point estimate for schedule, PED = 1173cd or 840wd.

Since the distribution f, x (d, x) is a mixture distribution with 16 possible states, we can
express the joint probability as the probability-weighted sum:

Pld < PED;x < PEX] = XI5, P(S) [, [ foxs,(d,x) dDdx = B, P(S))s,

This results in the set of sixteen joint probabilities (P(S;)) and probability-weighted joint
probabilities (P(S;)/s,), as shown in Table 11-36. The sum of P(S;)/s,, which represents
the joint probability of the point estimates of cost and schedule, is 0.04766, or 4.766%,
which is extremely low. P(S,)Js,is 4.630%, which accounts for nearly all of the joint
probability. This is because state S, has the highest joint probability density at the x,d
coordinates of the point estimates of cost and schedule duration. The marginal cost and
schedule variances of all of the states are similar; however the means of the risk-included
states are all higher than that of S,,.

Table 11-36 Joint Probabilities of Possible Risk States

Si Risk Occurrence P(S) Is; P(S))]s,
So R,NR,NnR; | 04165 | 1.11E-01 | 0.046304804
S, R,NR,NR; | 0.1785 | 1.37E-05 | 2.45409E-06

Soa R, NR,, NR; | 0.0245 | 2.87E-02 | 0.000704228
Sop R/NR,,NR; | 0.0245 | 8.09E-03 | 0.000198291
Sac R,NR,,NR; | 0.0245 | 6.75E-04 | 1.65497E-05
Saq R,NR,,NR; | 0.0105 | 4.41E-06 | 4.62865E-08
Sap R,NR,,NR; | 0.0105 | 1.30E-06 | 1.36871E-08
Sac R,NR,,NR; |0.0105 |9.49E-08 | 9.9621E-10

S, R,NR,NR; |0.1785 | 2.33E-03 | 0.000415305
S R,NR,NR; |0.0765 | 4.34E-11 | 3.31634E-12
Sea R;NR,,NR; | 00105 | 1.28E-03 | 1.34409E-05
Seb R,NR,,NR; | 0.0105 | 6.18E-04 | 6.48392E-06
Sec R,NR,,NR; |0.0105 | 1.11E-04 | 1.1689E-06

Ssa R,NR,,NR; | 0.0045 | 3.29E-11 | 1.48011E-13
Sp R;NR,, NR; | 0.0045 | 2.08E-11 | 9.37364E-14
Soc R,NR,,NR; |0.0045 | 5.63E-12 | 2.53355E-14

Total 1.0000 0.04766

170



ANALYTIC METHOD FOR RISK ANALYSIS

12 Summary

This report presents an analytic (i.e., a non-simulation based) method of quantitative cost
and schedule risk analysis building on analytic techniques of applied probability and
statistics. The analytic method provides near-instantaneous results with exact statistics
such as mean and variance of total cost and total schedule duration. It capitalizes on the
fact that the structures of both cost and schedule estimates define mathematical problems
to be solved through the use of applied probability. In this report we provide the
mathematics required to perform the task of 1) calculating the uncertainty of an estimate,
2) determining the risk from this uncertainty and a point estimate.

While much of the mathematics of applied probability used in this report are publicly
available through journal publications, the authors have derived methods and formulae for
functional correlation and application of discrete risks that have never been published
before. Therefore the report provides a very unique set of mathematics useful in the
analytic assessment of cost and schedule uncertainty and risk.

The report includes several quantitative examples, including two example estimates, where
the results obtained using the analytic method compare well with those results obtained
through statistical simulation. In cases where large-tailed distributions were involved in
the analysis (e.g., when discrete risks are used in an estimate or when we wish to find the
product of two or more RVs) we found simulations require very large number of trials and
often did not provide correct or even stable answers from run to run.

Given the excellent results obtained through this research, additional applications of the
analytic method are recommended for use in risk analysis, estimating relationship
development and probabilistic cost and schedule estimating.

171



ANALYTIC METHOD FOR RISK ANALYSIS

13 Conclusions and Recommendations

13.1 Conclusions
In the course of this research, perhaps the most daunting task was how to perform analytic
cost risk analysis using analogies and cost-on-cost factors. On the surface, these cost
estimating methods are simple and easy to understand, but they have much larger, more
complicated, and perhaps even sinister implications when treating them probabilistically.

The first issue is how to model probability distribution of an analogy, which is discussed in
Section 3.2.2.2. Without specifying the analogy as the mean or as a particular percentile of
the PDF, the distribution parameters are difficult to calculate. As pointed-out in the
literature (Flynn, Braxton, Garvey, & Lee, 2012), specifying a percentile value for an
analogy reduces the problem enormously.

The second issue is the difficulty in proper derivation and use of the cost-dependent CER
or factor. Anderson and Covert (Reducing Systemic Errors in Cost Models, 2008),
(Regression of Cost Dependent CERs, 2002) discuss how to properly develop these factors
— which is correct, but not the current industry norm. Additionally, the use of cost-
dependent CERs in a probabilistic uncertainty analysis requires the calculation of the
statistics of the product of the individual uncertainties. Calculating the moments of the
product of two lognormal distributions is a difficult task to perform analytically and is
particularly difficult for statistical simulations to do correctly and consistently from one
simulation run to another. The analyst understanding the probabilistic implications of
using cost-dependent CERs in an estimate will gain a healthy respect for these functions
bordering on a strong dislike of them.

The final conclusions we draw from this research are that analytic methods provide exact,
near-instantaneous results in cost and schedule (and joint cost and schedule) uncertainty
analysis. The mathematics used in the analysis require a significant non-recurring set-up
time and are best suited for models that have a defined WBS, such as the NASA/Air Force
Cost Model (NAFCOM), the NASA Instrument Cost Model (NICM) and the Unmanned
Space Vehicle Cost Model (USCM). The methods provided in this report would be a great
improvement to the performance of the risk analysis capabilities of these models.

13.2 Recommendations
The following set of recommendations provides avenues for continuing research in the area
of applied probability with applications to probabilistic cost and schedule risk analysis.
This research will improve the understanding of cost and schedule estimating through the
application of uncertainty in our estimates, which are uncertain predictions of future
events.
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13.2.1 Evaluating Statistical Simulations

This research provides many examples whereby the exact statistics of RVs and functions
of dependent RVs are compared to the results from statistical simulations. In some cases,
particularly when computing the product of two lognormal random variables and when
discrete risks are included in an estimate, the results of the statistical simulation are not
close enough approximations to ignore simulation error. The ability to extract statistical
data from simulations is important because it allows the analyst to determine how the
simulation arrived at a particular set of results. We recommend developing a small set of
test cases and experiments to determine the quality of statistical simulation tools that can
be compared to the exact values computed with the equations and methods presented in
this report.

13.2.2 Using Estimating Methods

The results of this research have indicated that estimates relying on methods such as build-
up approaches and direct analogies may require additional cost and schedule risks to be
included in them. Estimates using multiple scaled actuals or CERs that are created from a
database of actual costs and schedule durations from similar programs require fewer risks
to be included, presumably because the actual costs and schedule durations in the database
will include risks that have occurred. We recommend performing a study that compares
the risk-estimating ability of different estimating methods to determine whether or not
using estimating methods derived from multiple scaled actuals is a better predictor of
estimating uncertainty.

13.2.3 Basis of Estimate Credibility

Basis of estimate (BOE) credibility can be enhanced by use of multiple scaled actuals /
CERs as either a primary or secondary estimating method. BOEs based on expert
judgment and analogies require inclusion of discrete risks to account for missing risks in
the estimate. Discrete risk formulations such as those described in Section 9 provide a
method of accounting for discrete risks and the uncertainty due to them. BOEs based on
CERs or multiple scaled actuals require fewer discrete risks to be applied to the estimate
and provide a more substantive estimate.

13.2.4 Developing Cost Models
CER regression techniques have traditionally been limited to curve fitting of vectors of
discrete dependent variables (cost) with vectors of discrete independent variables (cost
drivers) as shown in Figure 13-1.
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Dis crete values for (x, y)
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Figure 13-1 Regression of Discrete Variables

We assume the regression variables are discrete and non-random in nature; however, errors
in both the dependent and independent variables can arise in the data collection and
normalization process (Figure 13-2). Error-in-variables (EIV) regression techniques can be
employed to find appropriate CERs with errors in either the dependent or independent
variables or even when both are random variables (Covert R. P., 2006).°® Using the
analytic method in the CER development process makes a non-simulation-based EIV
regression technique feasible and allows the CER developer to instantaneously see the true
error effects of CER regressions on cost model errors.

Random values for {x, y)

CER

. Hetorkaldata detbatba

= Costestmathg reltosip

St Stndand peEertenonbonds

Cost Driver (x)

Figure 13-2 Regression of Random Variables

13.2.5 Improving Cost and Schedule Risk Tools
Cost models such as NAFCOM, NICM, USCM and the Aerospace Small Satellite Cost
Model (SSCM) are all good candidates for implementing the analytic methods of
uncertainty analysis shown in this report.

% Covert, R., “Errors-In-Variables Regression”, Joint SSCAG/EACE/SCAF Meeting, London, UK,
September 19-21, 2006.
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Currently, NAFCOM uses a two-step process to model cost risk since the methods and
equations for calculating functional correlation were unknown at the time NAFCOM
implemented its cost risk analysis method based on FRISK. In the first step, uncertainty is
calculated for the prime mission product (PMP). In the second step, uncertainty for cost-
on-cost functions such as System Engineering, Integration Assembly & Test is calculated.
We recommend replacing the method of CRA in NAFCOM to instantaneously calculate
exact means and variances of total cost distributions in a single-step approach using the
methods proposed in this report rather than through a two-step approach. This will provide
exact answers and increase computational efficiency.

13.2.6 Time-Phasing a Resource-Loaded Schedule

A natural extension of the second example problem in this report is to include time-
phasing of a resource-loaded cost and schedule estimate. Using what we have learned
about using probability distributions of cost and schedule duration (i.e., uniform,
triangular, beta), we can apply the same principles to distributions of resources over time.
The resulting information that could be obtained from a time-phased, resource-loaded
schedule estimate will be a multivariate distribution of probability with respect to cost,
schedule and time. Combining these in a probabilistic estimate would allow the analyst
to compute joint probability/resource-loaded cost and schedule estimates. Conditional
values of cost and schedule duration would be easily obtained as well as the joint
probability distribution.

13.2.7 Allocating Schedule Margin
Allocating margins to schedule tasks (or groups of tasks) is important to ensure projects
do not overrun their schedules. Several methods have been proposed that use the results
of statistical simulations to reverse-and-forward-allocate schedule margin.  These
methods start with a confidence level of the probabilistic finish date and back-allocate
schedule reserve to tasks along the critical path to the starting task. Then the schedules
with reserve are recalculated to compute the new point estimate of the finish date.

Book (2006) proposed a method of cost risk allocation based on the “needs” of particular
WBS elements required to achieve a particular confidence level.®” This method has not
been applied to schedule estimating prior to this report, to our knowledge, since the
effective linearization of the schedule network problem has not been widely published.
We believe that “linearized” schedule networks such as the one demonstrated in Section
11.2 provide the necessary mathematical structure to allow schedule allocation based on
need. We propose developing a risk allocation method using these principles.

" Book, S. A. (2006). Allocating Risk Dollars Back to WBS Elements. ISPA/SCEA Joint Conference and
Training Workshop. Seattle, WA.
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14 Acronyms, Symbols and Definitions

14.1 Acronyms

AlAA American Institute of Aeronautics and Astronautics
ADACS Attitude determination and control system
AGE Aerospace ground equipment

ATP Authority to proceed

BOE Basis of Estimate

BOLP Beginning-of-life power

cd Calendar days

CDF Cumulative distribution function

CDF* Inverse cumulative distribution function
C&DH Command and data handling

CDR Critical Design Review

CER Cost estimating relationship

Cl Criticality index

CMF Cumulative mass function

CRA Cost risk analysis

CTV Contribution to variance

EIV Errors-in-Variables

FGM Farlie-Gumbel-Morgenstern

FRISK Formal Risk Assessment of System Cost
GFLOPs Giga (billions of) floating point operations per second
IA&T Integration, assembly and test

IEEE Institute of Electrical and Electronics Engineers
iff If and only if

JACS Joint Analysis of Cost and Schedule

JCS Joint cost and schedule

LLWBS Lowest-level work breakdown structure [element]
LOOS Launch and orbital operations support

MOM Method of moments

NASA National Aeronautics and Space Administration
NAFCOM NASA/Air Force Cost Model

PDF Probability density function

NICM NASA Instrument Cost Model

PDR Preliminary Design Review

PM Project management

PMF Probability mass function

PMP Prime mission product

ROR Risk and opportunities register

RV Random variable

SEITPM Systems engineering, integration and test, and program management
SOS System-of-Systems

TCS Thermal control system
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TD Time-dependent
TI Time-independent
TTC Telemetry, tracking and command/control
USCM Unmanned Space Vehicle Cost Model
uv Ultraviolet
WBS Work breakdown structure
wd Workdays
WRT With respect to
14.2 Symbols
ab,cd Coefficients a through d
e Naperian base
& Error i
f,9.h Functions
i,k Indices i through [
m,n Counters
14 The probability a particular event occurs
D; Risk impact j
P,Q Lognormal shape parameters
E[X] Expectation of X

oy Difference of two means

oo Difference of two standard deviations

D’ Duration in workdays

F' Finish date in consecutive calendar days

fx(x), gx(x)

PDFs of fy and gy over X

Fx (), Gx (x)

CDFs of fy and gy

Max(X,Y) Maximum of X and Y
Var(X) Variance of X
Corr(X,Y) Pearson correlation of RVs X and Y
Cov(X,Y) Covariance of X and Y
Px,j Pearson correlation of RVs X and Y
Oxy Covariance of X and Y
U Mean of X
Hic k*" Raw moment of X
Oy Standard deviation of X
oy> Variance of X
U(L,H) Uniform distribution defined by L and H
T(L,M,H) Triangular distribution defined by L, M and H
N(u, o) Normal distribution defined by u and o
L(P,Q) Lognormal distribution defined by P and Q
B(a,p,L, H) Beta distribution defined by shape parameters «a, 3, and

limits L, H
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Yi,j Binary value of bit j of integer i
R; Risk i
Pxy Linear (Pearson) correlation coefficient for X and Y
Pxy. Rank (Spearman) correlation coefficient for X and Y
S; [Risk] state i
[0 PDF of Standard Normal Distribution
d CDF of Standard Normal Distribution
v Skewness
K Kurtosis
n Boolean “and”
R, Boolean “not” of risk i
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16 Appendices
16.1 Appendix A - Probability Distributions

16.1.1 Uniform Distribution
The uniform distribution is defined by two parameters: The minimum possible value (L),
and the maximum possible value (H).

Je(¥)

L H

Figure 16-1 Uniform Distribution
The PDF of the uniform distribution U(L, H) is:

1 . )
fx() =Gy fLsx<H 16-1

The CDF of the uniform distribution U(L, H) is:

0 Lifx<lL 16-2
() ={c= JifL<x<H
1 Jif x >H

Its mean, or expected value, E(X), is:

EX) = # 16-3
And its variance, Var(X), is:

Var(X) = —(H — L)? 16-4
Higher order moments such as skewness and kurtosis are:

Skew(X) =0 16-5
Kurt(X) = —6/5 16-6
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16.1.2 Triangular Distribution
The triangular distribution is defined by three parameters, the lowest possible value (L), the
mode (M), and the highest possible value (H).

The PDF of the triangular distribution T(L, M, H) is:

2(x—-L)

(H-L)(M—-L)
fX(x) = 2(H-x)

(H-L)(H-M)

ifL<x<M 16-7

ifM<x<H

f)[ (x)

L M H

Figure 16-2 Triangular Distribution
If X is a triangular random variable, then its mean, or expected value, E(X), is:

E(X) = w 16-8

its variance, Var(X), is:

1 -
Var(x) = — [(M = LY(M — H) + (H — 1)?] 16-9
Higher order moments such as skewness and kurtosis are:
_ N2(L+H-2M)(2L—H-M)(L-2H+M) 16-10
Skew(X) = 5 (L2+M2+H2—LH—LM—-MH)3
Kurt(X) = —3/5 16-11
16.1.3 Normal Distribution
The normal PDF is uniquely defined by the parameters y and o.
The normal distribution N (i, o) is defined by the following PDF:
1[[e-p? ] 16-12
1 - _[ T g2
fX(x) = ﬁe {2 2 ]}
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Hosmal Dasributon
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Figure 16-3 Normal Distribution from (Garvey, 2000)

The CDF of the normal distribution is often of interest, since it enables calculation of the
percentiles of the distribution. The CDF of the normal distribution is defined as follows:

Fe(x) = P(X <x) = %, — e-{%[[“;‘z‘)z]]} " 16-13

Higher order moments such as skewness and kurtosis are:

Skew(X) =0 16-14
Kurt(X) =3 16-15

16.1.4 Lognormal Distribution
A lognormal random variable is the exponentiation of a normal random variable. Because
the lognormal random variable (X) and the normal random variable (Y) are related, their
means and standard deviations are also related.
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Figure 16-4 Transformation of Lognormal Distribution

Other important statistics associated with the lognormal distribution are the mode and
median:

Mode(X) = etr=ov" = gP-Q* 16-16
Median(X) = etr = eP 16-17

The PDF of the lognormal distribution is:

N M} 16-18
2 Q2
fx(x) = e g )
and the CDF of the lognormal distribution is:
) {2[ (n(t)- P)Z]]} 16-19
Fe() =PX <x) = f —e

16.1.5 Beta Distribution

16.1.5.1 Standard Beta Distribution
The standard beta distribution, Beta(a, ), is defined by two shape parameters, @ and g
over the interval [0,1].

The PDF of B(a, B) is

x4 1(1—x)P-1 16-20

K ==—=05

With mean,
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E[X] == 16-21

and variance,

e 16-22
Var(X) = (a+B)2(a+B+1)

The k™ moment of Bs(a, B) is

E[X*] = S pxk1) 16-23

T a+f+k-1
which is a recursive equation.

16.1.5.2 The Four Parameter Beta Distribution
The four parameter beta distribution, Beta4(«, B, a, b), is defined by four parameters: «
and B (which are the standard Beta shape parameters); and support parameters a and b
(which are the minimum and maximum bounds of the distribution, respectively).

The PDF of Beta4(a,,a,b) is obtained through affine transformation of the standard
beta distribution which changes the support from [0,1] to [a,b].

—a\@1 —ay\P 1 16-24
£, (y) = 1 f (E) 1 (i—_a) (1_(h))
) =00/xZe) T -a B(a,f)
_ (y—a)* (c—y)Ft

T (b-a)**B-1B(a,p) s(a<y<b)
With mode,
_ (_a-1 B-1 16-25
m= (a+ﬁ—2) b+ (a+ﬁ—2) a
mean,
_ (e B 16-26
E[Y] - (a+B) (a+ﬁ) a
and variance,
_ _ aB-a)? 16-27
Var(X) = (a+B)2(a+B+1)

16.1.5.3 The PERT Distribution
The PERT distribution, P(a, m, b), is a special case of the four parameter beta distribution
whereby: 1) the parameters a and b are the maximum and minimum bounds of the

186



ANALYTIC METHOD FOR RISK ANALYSIS

distribution; 2) the mode, m, is explicitly defined; and 3) the mean and variance obey strict
definitions:

Mean, p=E[X]= a+4;n+b 16-28
Variance, Var(X) = (b;g)z 16-29

For 16-28 and 16-29 to hold true for the PERT distribution, the standard beta parameters, a
and f3, are derived from P(a, m, b) by®

_ (w-a)@2m-a-b) 16-30
- 2nd

a(b—u)
= ——= where
B (u-a)
a+4m+b

- 6

For the symmetric case, the standard beta parameters a and 8 must satisfy this condition: *°

Ifm= b%, then a = 3 and § = 3 (proof of this is provided in Appendix C — Derivations)

16.1.6 Bivariate Normal Distribution

The bivariate normal distribution is a joint distribution formed by two normal
distributions and is defined by

1 -
BiN ((Ilp#z), (01' 02'01,2)) = fxl,x2 (x1,%2) = ;e_{gw} ; 16-31

2moy0; ,1—9%,2

— 2 2
1 xX1— xq— o — X —
where w = ~ [(1_“1) — 2,012( 1 ,u1)( 2 uz) | ( 2 uz) ],
1-pi, 01 ’ o1 oy o2

P12 = Py, x,

16.1.7 Bivariate Normal-Lognormal Distribution

1 -
BiNL ((.Ul'liz), (01’ 02’,01,2)) = fx, x, (X1, X3) = - e_{EW} ; 16-32

2mo1Q2 ’ 1-pZ,x;

wherew = 1_;;)%2 [("16;1“1)2 —2p1, (xl;lul) (ln(xsz—Pz) n (ln(x;j—Pz)z],

% From Vose Software ModelRisk Help, © Vose Software™ 2007. Reference Number: M-M0361-A
% Note the Beta Distribution article in Wikipedia, as accessed 13 November 2012, does not correctly specify
these formulae and states that for the symmetric case that @ = 4 and 8 = 4, which are incorrect.
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P, is defined by P = %ln (“sz) Q, is defined by Q = [In (1 +z—2)

U2 +o2

2
e¥2-1

16.1.8 Bivariate Lognormal Distribution

1 -
BiL ((leiz)’ (01' Uz'Pl,z)) = le,Xz (x1,x3) = - e_{_w} ; 16-33
2mQ1Q2 }1—9%,2951352

where w = 1_;%2 [(ln(lez—Pl)Z B 2'01'2 (ln(lez—Pl) (ln(xsz)—Pz) n (ln(xéz—pz)z]’

P;and P, are defined by P = %ln (“ZMT:Z), Q; and Q, are defined by

, a2 1 [e0F 105
Q = ln(l +P),p1,2:mln<1+pxlxz eti-lyer 1)
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16.2 Appendix B - Expectation Operations

16.2.1 Expectation Properties
If X is a PDF then the expected value of X is:

E[X] = ux 16-34
The variance of X is:
Var(X) = E[X?] — E?[X] = E[X?] — uy? 16-35

The covariance of X and Y is:

Cov(X,Y) = oxy = E[(X — ux)(Y — piy)] 16-36
COU(X, Y) = pX,YO'XO'Y 16-37
Cov(X,Y) = Cov(Y,X) 16-39
Cov(aX + b,cY +d) = (ac)Cov(X,Y) 16-40
If X and Y are independent, then Cov(X,Y) =0 16-41
E[XY] = pxyoxoy + pixty 16-42
Corr(X,Y) = pyy = SXtxity 16-43
’ Ox 0y
E(a+bX)=a+bE(X)=a+ buy 16-44
Var(a + bX) = (b*)Var(X) 16-45

The k" moment of X

| Zxx*Py(x) ,if X is discrete 16-46
Elxt] = {f_oom x*fy(x)dx ,if X is continuous
Yxg(X)Px(x) ,if Xisdiscrete 16-47
Elgl = {ffomg(x)fx(x)dx ,if X is continuous
E[X +Y] = E[X] + E[Y] 16-48
E[X —Y] = E[X] — E[Y] 16-49
Var[X + Y] = Var[X] + Var[Y] + 2Cov(X,Y) 16-50
Var[X = Y] =Var[X] + Var[Y] — 2Cov(X,Y) 16-51
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16.2.2 Expectation Operations
For the uniform case, where fy(x) = —

H-L
[ 1 [ 1 1 H Hk+1 _ Lk+1
E Xk — k dx = kd — k+1 —
[%*] f_wx fedx =g | *dx = R I K+ 1(H — L)
For the triangular case
Kkl _ 2 Mk+2_Lk+2 Mk+1_Lk+1 2 Hk+1—Mk+1 Hk+2—Mk+2 16_52
E[x¥] = (H—L)(M—L){ e } (H—L)(H—M){ k+1  k+2 }

For the normal case (by definition), k is defined as a positive integer. In cases where k is
not an integer value, E[Xk] is defined by a series of confluent hypergeometric equations.

E[X°]=1
E[X']=u
E[X?] = u? + o2
E[X3] = u® + 3uc?
E[X*] = u* + 6u%c? + 30*
For the lognormal case from Garvey (2000), E[Xk] is defined for all positive values of k.

E[Xk] _ e(kP+%Q2k2)
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